

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

Approved for public release; distribution is unlimited.

ENGINEERING SOFTWARE FOR INTEROPERABILITY
THROUGH USE OF ENTERPRISE ARCHITECTURE

TECHNIQUES

by

Jennifer L. Parenti

March 2003

Thesis Advisor: Valdiz Berzins
Second Reader: Richard Riehle

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved
 OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
Engineering Software for Interoperability through Use of Enterprise
Architecture Techniques

5. FUNDING NUMBERS

6. AUTHOR(S)
Jennifer L. Parenti

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution is unlimited.

12b. DISTRIBUTION CODE

13. 13. ABSTRACT
This thesis proposes a new structured methodology for incorporating the use of enterprise architecture

techniques into the DoD software acquisition process, to provide a means by which interoperability requirements can
be captured, defined, and levied at the appropriate time in a system’s development. It discusses the necessary
components of these architectural models, how these models capture our interoperability needs, and how these
interoperability needs form the basis for meaningful dialogue between the DoD’s acquisition and planning
communities. While this methodology is applicable to many domains and functional areas, for the purposes of this
thesis, the focus will be solely on software systems (including systems with embedded software) within the DoD.
14. SUBJECT TERMS
Software Architectures, Enterprise Architectures, Software Engineering, Interoperability, System Integration,
Software Integration

15. NUMBER OF
PAGES
 101

 16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ENGINEERING SOFTWARE FOR INTEROPERABILITY THROUGH
USE OF ENTERPRISE ARCHITECTURE TECHNIQUES

Jennifer L. Parenti

Captain, United States Air Force
B.S., United States Air Force Academy, 1995

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author:

Jennifer L. Parenti

Approved by:

Valdis Berzins, Thesis Advisor

Richard Riehle, Second Reader

Valdis Berzins, Chairman
Software Engineering Curriculum

Chris Eagle, Chairman
Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

There are many efforts underway focused on resolving the system and software

interoperability problems within the Department of Defense. While several of these efforts are

attempting to attack this issue using new technologies and standardization, experience suggests

most of these interoperability problems are caused by deficiencies in the way we define and

capture interoperability requirements within our acquisition processes and policies. In order to

affect real progress towards department-wide interoperability, it will be necessary to change the

methods by which interoperability is considered in the acquisition process.

Many acquisition agents within the DoD suffer from the misconception that technology

alone can solve their interoperability problems. The reality is that there are many challenges

within the requirements and planning processes that first must be overcome before technology

can be effectively applied. Since interoperability requirements are dynamic, and often poorly

understood before systems are put to use in the field, the requirements and acquisition

communities must have a flexible and powerful method to communicate in order to overcome

these challenges. This thesis provides a solution with which the DoD can address these

fundamental gaps in our acquisition processes, thus creating an environment more conducive to

software interoperability within our system of systems.

This thesis will propose a new structured methodology for incorporating the use of

enterprise architecture techniques into the DoD software acquisition process, to provide a

means by which interoperability requirements can be captured, defined, and levied at the

appropriate time in a system’s development. It will discuss the necessary components of these

architectural models, how these models capture our interoperability needs, and how these

interoperability needs form the basis for meaningful dialogue between the DoD’s acquisition and

planning communities. While this methodology is applicable to many domains and functional

areas, for the purposes of this thesis, the focus will be solely on software systems (including

systems with embedded software) within the DoD.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

A. RESEARCH QUESTIONS...3

B. SCOPE AND LIMITATIONS..3

C. ORGANIZATION..3

II. BACKGROUND/PREVIOUS STUDIES ...5

A. DOD ARCHITECTURE FRAMEWORK DOCUMENT [1]............................5

1. Architecture Views...6

2. C4ISR Core Architecture Data Model [9]..10

B. JOINT OPERATIONAL ARCHITECTURE ..11

C. GLOBAL INFORMATION GRID (GIG) ARCHITECTURE.........................11

D. AP-233 ...12

III. SOFTWARE & INTEROPERABILITY WITHIN THE DOD15

A. DEFINITION OF INTEROPERABILITY..15

B. CURRENT INTEROPERABILITY SITUATION IN THE DOD....................15

C. HOW THE DOD DEFINES INTEROPERABILITY REQUIREMENTS16

D. MAJOR SHORTCOMINGS OF CURRENT DOD PROCESSES.................17

E. SOFTWARE ENGINEERING AND INTEROPERABILITY.........................18

IV. ENTERPRISE ARCHITECTURE FOR SOFTWARE INTEROPERABILITY...........21

A. DEFINITION OF ENTERPRISE ARCHITECTURE21

B. BENEFITS OF ENTERPRISE ARCHITECTURE..22

C. NEW ARCHITECTURAL MODEL...23

D. ELEMENTS OF PROPOSED ARCHITECTURAL MODEL.........................23

1. Step One: Establish the Domain and All Its Stakeholders 23

2. Step Two: Understand Your Business..26

3. Step Three: Document Your Capabilities ...41

 viii

4. Step Four: Determine What Systems are Capable of Meeting What

Roles. ..46

5. Step Five: Levy Interoperability Requirements on Systems 50

6. Step Six: Prepare for the Future .. 55

V. BENEFITS OF THE DATA-DRIVEN APPROACH..66

A. MAINTENANCE...67

B. DATA CONFIGURATION, CONTROL, AND CONSISTENCY................68

C. INTEGRATING MULTIPLE ARCHITECTURES..69

D. MULTIPLE VIEW CAPABILITIES ...69

1. Role-Centric vs. System-Centric ..69

2. “Roll-Up”/Zoom In/Zoom Out..70

3. Time-Phasing...70

VI. CLOSING COMMENTS...73

A. RECOMMENDATIONS..73

B. CONCLUSIONS ...73

APPENDIX A...75

APPENDIX B...77

APPENDIX C...81

LIST OF REFERENCES ..85

INITIAL DISTRIBUTION LIST...87

 ix

LIST OF TABLES AND FIGURES

Figure 1. Operational Information Exchange Matrix (OV-3) – Representative Format.........17

Table 1. Architectural Domain Stakeholders ..24

Table 2. Functional Area Descriptions ...27

Table 3. Initial Activity List..28

 Figure 2. Intruder Detection Activity Groupings...29

Table 4. Combined Activity List ..30

Table 5. Final Activity List...31

Table 6. Intruder Detection IER List ..33

Table 7. Fire Detection IER List ..33

Table 8. Flood Detection IER List ...34

Table 9. Aggregate IER List ..35

Table 10. Final IER List ..36

Figure 3. Intruder Detection Roles...37

Figure 4. Fire Detection Roles...37

Figure 5. Flood Detection Roles..37

Table 11. Intruder Detection Aggregated IER List..38

Table 12. Fire Detection Aggregated IER List..39

Table 13. Flood Detection Aggregated IER List...39

Figure 6. Operational Perspective, Role-Centric Architecture Data Model..........................40

Table 14. Sensor Market Survey Results ...42

Table 15. System Controller Market Survey Results ..43

Table 16. Monitoring Service System Market Survey Results...43

Table 17. External Agency System Market Survey Results...43

Table 18. Homeowner System Market Survey Results...43

Figure 7. Data Model Relationship between Operational Perspective, Role-Centric and

Capabilities Perspective, System-Centric Architectures..45

 x

Table 19. Sensor Assignments to Roles ...47

Table 20. System Controller Assignments to Roles...48

Table 21. Monitoring System Assignments to Roles ...48

Figure 8. Relationship between Role-Centric and System-Centric Architectures (Partial).....49

Table 22. System Controller Gap Analysis ...52

Table 23. Sensor Gap Analysis..53

Table 24. Monitoring System Gap Analysis..53

Figure 9. Relationship between Role-Centric and System-Centric Architecture (Complete).55

Table 25. Updated Activity List...58

Table 26. Updated Intruder Detection IER List..58

Table 27. Sensor Systems with Time-Phased Requirements ...60

Table 28. Sensor Systems with Time-Phased Capabilities ..62

Figure A-1 . Proposed Architecture Data Model ...75

Figure B-1: C4ISR Core Architecture Data Model..77

Table B-1 – CADM Data Model Comparison..78

Figure C-1. AP-233 Data Model Overview [17]...81

Figure C-2. Allocating Requirements to Systems [17] ..82

Figure C-3. System Decomposition [17]..83

Figure C-4. Activity Modeling Example [17]..84

 xi

LIST OF ABBREVIATIONS, SYMBOLS, AND ACRONYMS

AOC Air Operations Center
AP Application Protocol
ASD Assistant Secretary of Defense
C2 Command and Control
C3I Command, Control, Communications, and Intelligence
C4 Command, Control, Communications and Computers
C4I Command, Control, Communications, Computers and Intelligence
C4ISP C4I Support Plan
C4ISR Command, Control, Communications, Computers, Intelligence,

Surveillance and Reconnaissance
CADM Core Architecture Data Model
CCA Clinger-Cohen Act
CINC Commander in Chief
CJCSI Chairman of the Joint Chiefs of Staff Instruction
COP Common Operational Picture
COTS Commercial-Off-the-Shelf
CRD Capstone Requirements Document
DoD Department of Defense
DoDD Department of Defense Directive
Exch Exchange
Func Function
GCCS Global Command and Control System
GIG Global Information Grid
GISRA Government Information Securities Reform Act
GSORTS Global Status of Resources and Training System
HQ Headquarters
I3 Integrated Intelligence and Imagery
IER Information Exchange Requirement
INCOSE International Council on Systems Engineering
Info Information
ISO International Standards Organization
IT Information Technology
J2 Director of Intelligence
J3 Director of Operations
J6 Director of Command, Control, Communications, and Computers
JFPO Joint Forces Program Office
JOA Joint Operational Architecture
JOPES Joint Operational Planning and Execution Segments
JSF Joint Strike Fighter

 xii

JV Joint Vision
MNS Mission Need Statement
ORD Operational Requirements Document
OV Operational View
POM Program Objective Memorandum
Reqt Requirement
SIEC System Information Exchange Capability
SIER System Information Exchange Requirement
SIPRNET Secure Internet Protocol Routing Network
SPAWAR Space and Naval Warfare Systems Command
SV Systems View
TBMCS Theater Battle Management Core Systems
TRANSCOP U.S Transportation Command Common Operational Picture
U.S. United States
UJTL Unified Joint Task List
UML Unified Modeling Language
USPACOM United States Pacific Command

 1

I. INTRODUCTION

Interoperability is a state, a condition in which two systems have the ability to exchange

the information its users need in a meaningful manner. Achieving a state of interoperability

between two systems requires detailed planning and forethought. Knowing what information is

required to be exchanged and what formats the systems will support and making the proper

arrangements for an interface between these systems can be a daunting task. However, it is the

maintenance of this state of interoperability, which poses the real challenge. Ensuring no

uncoordinated changes are made to either the systems or the environment that may affect this

state of interoperability is increasingly difficult in today’s world. Add several systems, systems

of systems, or families of systems into this equation and the complexity grows exponentially.

To make two systems interoperable requires several detailed planning steps and multiple

layers of technical understanding. For example, one needs to know the pieces of information to

be exchanged, how the two systems will be employed and employed together, the physical

support necessary to achieve interoperability, the components and capabilities of the two

systems, and the underlying technologies on which those systems rely. To keep two systems

interoperable requires a methodology through which changes in the two systems are tracked

over time, to ensure a constant state of interoperability.

Several communities of distinct people and needs bring a system to fruition. Users and

developers are both stakeholders in a system’s development, but both with very different

perspectives and attitudes towards the system. Furthermore, the people developing a system’s

requirements and specifications, or the people maintaining a system, may be neither the user, nor

the developer. Capturing the perspectives and needs of all these communities can be difficult,

and when trying to meet the needs of multiple systems, each catering to their own sets of

multiple communities, the problem of interoperability can overwhelm traditional system and

software development models.

In recent years, the concepts of using architectures to solve system interoperability

problems have received much attention. Terms like software architecture, enterprise

 2

architecture, operational and system architecture have flooded the engineering community with

hopes of tackling interoperability troubles. Department of Defense Directive 5000.1 states,

Interoperability within and among United States forces and U.S. coalition partners is a
key goal that must be addressed satisfactorily for all Defense systems to that the
Department of Defense has the ability to conduct joint and combined operations
successfully… The Department of Defense must have a framework for assessing the
interrelationships among and interactions between U.S., Allied, and coalition systems.
Mission area focused, integrated architectures shall be used to characterize these
interrelationships. This end-to-end approach focuses on mission outcomes and
provides further understanding of the full range of interoperability issues attendant to
decisions regarding a single program or system. [15]

In my capacity as a Command and Control Interoperability Project Officer for the Joint

Forces Program Office (JFPO), Space and Naval Warfare Systems Command (SPAWAR),

San Diego, CA, I had the opportunity to work hands-on with several of the major

interoperability and architecture initiatives that are ongoing throughout the Department of

Defense. Through this work, I have concluded that the greatest benefit architecture can achieve

towards interoperability is in the capturing and maintaining of system interoperability

requirements. Furthermore, while many of the current initiatives have good intentions, they will

fail to achieve interoperability because they do not recognize two key aspects of the relationship

between interoperability and architecture: 1) there are many communities, each with distinct

needs, which must work collectively to create interoperable families of systems; and, 2) a single

architecture will never meet the needs of all those stakeholders.

This thesis proposes a methodology for integrating the concepts of enterprise

architecture into the system and software development cycles, simplifying the currently used

models into only those objects necessary for achieving the goal of interoperability. It proposes

a unified repository of architectural data, but with the ability to be viewed in several forms (i.e.

with the ability to create multiple architectural views), each tailorable to the needs of the different

stakeholders. The power of this methodology is it provides a mechanism by which functional

and interoperability requirements are captured, defined, and levied on systems based on how

they will be employed. This is a dynamic process, which can accept changes to requirements,

 3

system environments, and domains; and facilitates the concepts of time-phasing, spiral

development, requirements vs. capabilities, and operational vs. system needs.

A. RESEARCH QUESTIONS

This thesis will answer the following research questions:

1) Can the use of enterprise architecture throughout the software acquisition lifecycle

improve the process of defining interoperability requirements for software systems?

2) How do architectural models allow a software developer to capture the evolving

interoperability needs of all a system’s stakeholders?

3) What architectural components are required to support the development and

maintenance of interoperability requirements?

4) How does architecture modeling allow multiple software developers to synchronize

the development of several independent software systems so interoperability is

continuously achieved?

B. SCOPE AND LIMITATIONS

This thesis proposes a methodology for using enterprise architecture techniques to

capture, define, and levy software interoperability requirements. The author recognizes that

there are a multitude of other applications of enterprise architectures, even within the

Department of Defense, that would require different data models, different implementation

techniques, and different stakeholders. This thesis is limited only to those architectural

requirements necessary for the purposes of capturing, defining, and levying software and system

interoperability requirements; and, therefore omits--by design--implementation considerations

like technical architecture views and technology standards.

C. ORGANIZATION

This thesis is comprised of six main chapters:

- Chapter I: Introduction

 4

- Chapter II: Background/Previous Studies – an outline of some of the many

enterprise-architecture related efforts ongoing in industry and the Department of Defense

(DoD).

- Chapter III: Software & Interoperability within the DoD -- This chapter introduces the

reader to the concepts of interoperability, how it fits into the software domain, and how these

concepts are currently treated within the DoD. It is intended to establish a common framework

for understanding of the rest of the thesis.

- Chapter IV: Enterprise Architecture for Software Interoperability -- This chapter

discusses what enterprise architecture is and shows, through a storyboarded example, how

proper application of these techniques leads to formation of interoperability requirements.

- Chapter V: Benefits of the Data-Driven Approach – an explanation of the benefits of

using a relational database for capturing architectures, as opposed to the more commonly

applied “picture” approach.

- Chapter VI: Closing Comments – This chapter provides thesis recommendations and

conclusions.

 5

II. BACKGROUND/PREVIOUS STUDIES

There are a number of enterprise architecture-related efforts going on throughout the

Department of Defense and industry. To gain an appreciation for what this thesis represents,

and how it fits into current activities, I have chosen to outline a few of those efforts on the

following pages.

A. DOD ARCHITECTURE FRAMEWORK DOCUMENT [1]

No discussion of architecture within the DoD could begin properly without an

explanation of the Department of Defense Architecture Framework Document, also known as

the Command, Control, Communications, and Computers, Intelligence, Surveillance, and

Reconnaissance (C4ISR) Architecture Framework Document. This document outlines, in

exhausting detail, the required elements of any DoD architecture effort, regardless of the

customer or architectural need. It promotes a common framework for all architectural efforts,

describing required data elements, required views of the data, and suggested applications for the

architecture once completed.

The primary downfall of the DoD Architecture Framework is that it focuses on the

views of the data, rather than the data itself. By mandating particular views, it forces the

aspiring architect to focus on the architecture as a set of drawings and pictures, rather than focus

on the relationships between the data elements, which is where the strength of the architecture

lies. Because of the extent of the mandatory products, many organizations blindly go through

the steps to meet the mandated requirements of the Framework document rather than take the

time to understand what the architectures are and why they may be important to their

organizations. This results in a ‘fill the check box’ approach to the architectures’ creation and

ultimately results in architectures that are of little use to the creator or any of the other

stakeholders in the domain.

In this way, the document fails to recognize that different communities may wish to use

the architectural data in different ways, thus taking away the power of a flexible, data-driven,

 6

object-oriented approach. For instance, the requirements community is likely to take a much

different approach to architecture than a system developer or user or maintainer. The focus of

requirements is typically on the interactions of the many organizations and systems within their

area of interest, also known as the ‘domain’ of their architecture. A system developer will

likely focus on how his particular system interacts with other systems regardless of the domain;

while a system maintainer may be interested in the evolution of a particular system over time.

The current approach of the DoD Architecture Framework fails to capture these various needs

of these separate communities, or ‘stakeholders .’

However, what the DoD Architecture Framework does, and does quite well, is

establish a common vocabulary and structure for the creation of architectures in the DoD. This

is an absolutely vital aspect of any significant architectural effort. In a sizable domain, especially

one that consists of so many functional areas and distributed systems as the DoD, it is important

to establish this common data model to facilitate integration of disparate architectural efforts. I

will use much of the terminology of the framework document as a basis for the ontology of this

thesis.

1. Architecture Views

So, to begin, the DoD Architecture Framework outlines 3 major categories of

architectural products: Operational, System, and Technical. These categories have a strong

foundation and are widely accepted and understood in the world of enterprise architecture

development. These terms also are used as the foundational language of the proposed

methodologies (Chapter IV) and are seen often throughout this thesis.

a. Operational Architecture Views

The framework describes the operational architecture view as “a description of

the tasks, and activities, operational elements, and information flows required to accomplish or

support a military operation.” In short, the operational architecture views equates to business

modeling for the DoD.

 7

Operational architecture views are generally independent of technology,

systems, or organization/force structures. In theory, they should describe how missions and

functional areas (i.e. Theater Air and Missile Defense, Close Air Support, or Anti-Submarine

Warfare) are accomplished from an activity and information flow standpoint, regardless of what

organizations or systems are available to accomplish the mission. However, in practice,

because of the products mandated by the DoD Architecture Framework, these views are often

modeled around existing force structures and systems, rather than considering how the

mission/functional area should be accomplished regardless of a particular system or force

implementation.

This practice greatly reduces the reusability of the created architectures, as the

information captured is often too specific to be applied to similar domains. Operational

architectures ideally should be so generic that, for example, an architecture that captures the

Close Air Support mission in one theater should be able to be re-used in another theater, as

doctrinally the missions should be the same regardless of the units or systems which are

implementing them.

Within the DoD Architecture Framework, operational views are described

using these basic architectural elements: nodes, activities, and information exchange

requirements. Nodes are virtual entities that represent a collection of activities (and, within the

Architecture Framework, systems, as well). Nodes are places where activity occurs. Example

nodes might be: Command Post, Destroyer, or Fighter Wing. The operational views in the

DoD Architecture Framework tend to be node-centric, i.e. they start with development of the

nodes and describe activities and interactions at the node level. After the development of the

nodes comes assignment of activities to the nodes. In most DoD architectures, activities are

derived from the Unified Joint Task List (UJTL)—a living list of the common activities required

to perform daily and wartime missions. Requirements for nodes to exchange information are

documented Information Exchange Requirements (IER). Typically, IERs are defined as

using an information element (the description of the information being exchanged) and two

nodes. While it is preferable that IERs also list the activities within the nodes that generate the

 8

need for the IER, it is often seen that activity modeling is not complete enough to meet this

requirement. This focus of the operational view on the nodes and not the activities is another

shortcoming of the DoD Architecture Framework.

b. System Architecture Views

The system view is “a description of systems and interconnections providing for,

or supporting, warfighting functions.” In short, the system architecture views are wiring

diagrams, showing systems and how they interconnect.

Within the C4ISR Framework, architectural system views tend to take on the

form of static representations of a given architectural domain. That is, they show specific

instantiations of systems and how they are physically connected. This approach to systems

architecture is, in this author’s opinion, one of the major shortcomings of the C4ISR

Architecture Framework Document. This approach fails to capture the correct information to

achieve system interoperability.

These types of views, which show workstations and servers and circuits and

routers are generally only of use at the micro-level—that is, they are useful to the personnel

responsible for the maintenance of those systems locally, but generally not of much use to the

actual engineering process for generating requirements and implementing them. Rather, system-

to-system interoperability requires a macro view of the world. To achieve this, system

architecture views must also take on a more generic approach of understanding how system

types, as opposed to instantiations, are required to interoperate. For example, to someone

responsible for documenting requirements for the Global Command and Control System

(GCCS), it is less important to him to know that a GCCS system at Hickam Air Force Base

(AFB) is located in Bldg A and connects to the SIPRNET via Router B, C, & D, as it is to

know that GCCS needs SIPRNET connectivity to exchange information with the Theater Battle

Management Core System (TBMCS.) This is one example of micro- versus macro-level

system architectures.

 9

Another shortcoming of the systems views in the DoD Architecture Framework

is that it does not allow for the documentation of system capabilities versus requirements. While

system requirements are an extremely important aspect of the acquisition and development

processes, it does little good to the warfighter to know that two systems are required to

exchange certain elements of information. Rather, it is more important in this case to understand

whether the systems are capable of exchanging these information elements. This is an extremely

important distinction, and a key shortcoming of the Architecture Framework that must be

overcome.

System views are typically defined using nodes, systems, and interfaces. The

concept of nodes is equivalent to that in the operational view—a collection of systems capable

of performing certain functions. Systems are defined at the level of the architect; however,

system hierarchies are not easily supported, so it is up to the architect to maintain consistency

and determine at what level ‘systems of systems’ are to be architected. Interfaces represent

physical connections between systems. Usually, interfaces will only be represented if there is

some meaning to the interface (i.e. information can actually be exchanged over the connection.)

However, this points out another shortcoming of the Architecture Framework. That is, there

are few dependencies between the operational and system views; and, therefore, they can be

created independent of each other, with little to no coordination between the architects.

Therefore, just because two systems have IERs in the operational view and interfaces in the

systems view, this does not necessarily mean that those IERs are supported by the interfaces—

the two systems may not be interoperable. This is another issue addressed by the methodology

proposed in this thesis.

c. Technical and “All” Architecture Views

The technical architecture view is “the minimal set of rules governing the

arrangement, interaction, and interdependence of system parts or elements, whose purpose is to

ensure that a conformant system satisfies a specified set of requirements.” That is, the technical

architecture is the standards on which the systems within the architecture are based. Often, as

 10

in the case of the DoD, technical architectures are used to levy technology standards onto the

systems that fall under its purview. Technical architectures focus on implementation decisions of

standards across the enterprise domain. As this thesis focuses on the requirements definition

process, it will not discuss technical architectures.

The “All” architecture views are two additional products also mandated by the

framework. They are primarily administrative in nature and serve to provide introductory and

summary information of the architecture as well as provide an architectural dictionary of terms

and acronyms. These views are useful in giving an overall description of the architecture and in

attempting to gain data commonality; but disparate sets of dictionaries, which require no

coordination between them, will never achieve the goal of an integrated data dictionary. This is

another reason why a data-centric approach to architectures, using an object-oriented common

architectural repository (database) is so necessary.

2. C4ISR Core Architecture Data Model [9]

The C4ISR Core Architecture Data Model (CADM) is the companion document to the

C4ISR Architecture Framework. It describes the basic set of standardized entities that should

be used when building C4ISR architectures. In short, the CADM describes every object, every

attribute, every relationship contained within the C4ISR Architecture Framework.

The CADM is designed to provide a common approach for organizing and portraying

the structure of architecture information. By facilitating the exchange, integration, and

comparison of architecture information throughout DoD, this common approach should help

improve C4ISR architecture interoperability and reusability.

It is in the interest of supportability and tractability of enterprise architectures that a

common set of architectural data elements be developed—whether as part of the DoD

mandate, or in any commercial architectural endeavor as well. This provides a basis for

information sharing between architectures, with an end goal of someday being able to integrate

existing architectures into a common database. It is important, for this reason that any DoD

architecture efforts not deviate from the CADM. Appendix B shows the relationship between

 11

the proposed architecture data model and the CADM, and demonstrates there are several

shortcomings to the CADM that could be easily incorporated into the current model to achieve

better data fidelity and facilitate a more dynamic incorporation of interoperability requirements

and capabilities.

B. JOINT OPERATIONAL ARCHITECTURE

The Joint Operational Architecture (JOA) is the DoD’s premiere attempt at creating a

common operational architecture. The JOA writers took a similar approach to the author in that

they first defined their domain (all DoD) and functional areas (using Joint Vision 2010 goals).

These concepts will be discussed further in Chapter IV. The JOA efforts are the best observed

thus far in the DoD in attempts to create top-down operational architectures (requirements must

come from the top); unfortunately, it will fall short of being useful for defining interoperability

requirements due to lack of proper resourcing and support and because they have failed to take

a data-driven approach to their architecture. Their static ‘picture’ approach is not dynamic

enough to be of benefit to the acquisition community. The proposed methodology will address

an alternative to these efforts.

C. GLOBAL INFORMATION GRID (GIG) ARCHITECTURE

The GIG Architecture effort, led by the Assistant Secretary of Defense for Command,

Control, Communications, and Intelligence (ASD(C3I)) has quickly become the leading

architectural effort in the Department of Defense. The GIG effort is currently attempting to do

what few other architectural efforts have attempted in the past: it is attempting to create a

domain-wide architecture by integrating existing architectural products.

This undertaking is proving extremely difficult as the architects are finding that the

existing architectural products suffer from the weaknesses of the DoD Architecture Framework

discussed earlier (i.e. they lack common language, structure, data formats, etc.) However, the

GIG Architecture effort has two strengths/advantages over other architectural efforts: 1) it is

well resourced; 2) it has the ability to take a domain-wide approach to the architecture as it

 12

comes from the highest levels of the Defense Department. This top-level view will prove

extremely helpful in the creation of future architectures that will certainly be based on the efforts

of the GIG architects.

D. AP-233

Application Protocol 233 (AP-233) is the more common name for ISO 10303-233, an

emerging ISO systems engineering data exchange standard. It is relevant to this thesis work in

that it also will attempt to allay system interoperability problems that are created when

simultaneous development efforts are not coordinated. In the systems engineering community,

there exist many tools designed to aid systems engineers in the capturing of requirements,

capabilities, and physical implementations. In this sense, these tools are not unlike the many

tools that exist to capture enterprise architectures. Over the years, these tools have been

developed for specific projects at specific times with little thought or attention given to the idea

that eventually, it might become important to exchange information between them.

Now, the systems engineering community, namely through the International Council on

Systems Engineering (INCOSE) and ISO, is attempting to bring interoperability to these tools

through the creation of a common data standard. This work is comparative to the creation of

the common architectural data repository proposed in this thesis and the two share many similar

aspects, primarily in scope and purpose.

AP-233 Working Draft 5 consists of several domains: requirements; functional design;

physical design; graphical representation and layout; traceability management; configuration

management; and industry process [13]. This design mirrors the intent of the proposed

common architectural data repository (which will be discussed more in Chapters IV and V)

especially in that it differentiates between requirements, capabilities (functional design), and

implementation (physical design). But also in that it provides common standards for graphical

representation (a key aspect of any architectural effort—including the proposed methodology),

traceability and configuration management (the reasons for proposing a centralized data model)

 13

and also in that it recognizes the many needs of its stakeholders through its ‘industry process’

domain. This domain focuses on risk management and other user-centric issues.

AP-233 is still currently a draft standard and is in coordination. Recent publications

indicate it may be published sometime in 2003. However, Appendix C contains that latest

information on AP-233 and how the proposed architectural data model relates.

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. SOFTWARE & INTEROPERABILITY WITHIN THE DOD

Software and interoperability are inextricably linked—especially in today’s world of high

technology and software-driven communications systems. But the complexities behind what it

means to be interoperable, how we define interoperability requirements, and how they get levied

onto our software-intensive systems are not always appreciated.

A. DEFINITION OF INTEROPERABILITY

According to CJCSI 6121.01b, Interoperability and Supportability of National Security

Systems, and Information Technology Systems, interoperability is defined as: (1) The ability

of systems, units, or forces to provide services to and accept services from other systems, units,

or forces and to use the services so exchanged to enable them to operate effectively together,

and (2) The condition achieved among communications-electronics systems or items of

communications-electronics equipment when information or services can be exchanged directly

and satisfactorily between them or their users. In short, interoperability is achieved when every

user has the ability to get the services or information they require in any situation and are able to

use that information in the successful completion of their mission.

This definition of interoperability is predicated upon the existence of an understanding of

the requirements to be interoperable. In fact, CJCSI 6212.01b goes further on to state that for

the purposes of this instruction, the degree of interoperability will be determined by the

accomplishment of the proposed Information Exchange Requirements. In that sense, it would

be impossible to understand to what extent units, systems, or users are interoperable without

knowledge of their requirements to be so. This highlights the importance of a methodology to

capture interoperability requirements and levy these requirements effectively on our systems.

B. CURRENT INTEROPERABILITY SITUATION IN THE DOD

Interoperability of DoD weapons and communications systems is among the top

priorities of all our Unified CINCs. It is a problem that continues to grow, and our reliance on

 16

information and information superiority in modern warfare will ensure its importance as we move

deeper into the 21st century. Concepts such as Joint Vision 2010 and Joint Vision 2020

already rely heavily on the pre-existence of joint interoperable systems. These concerns are

exacerbated as we consider a more global schema of federal and coalition (i.e. international)

interoperability.

But system interoperability is not just an exercise for the system or software developer.

Many times, interoperability problems cannot be overcome by technology alone. According to

Hamilton and Murtagh [3], “compatible systems, doctrine, and policy must exist”. And, a

common, data-driven architectural approach is a flexible, maintainable methodology to bring

these three very different, but very necessary and related aspects of the system development

process together. Hamilton and Murtagh go further to state that requirements engineering is the

first step towards achieving system interoperability. [3]

C. HOW THE DOD DEFINES INTEROPERABILITY REQUIREMENTS

CJCSI 3170.01b defines three primary documents it uses to capture requirements: the

Mission Need Statement (MNS); Capstone Requirements Document (CRD); and Operational

Requirements Document (ORD). Warfighter mission needs are defined in broad operational

terms in a MNS document. Subsequently, the needs expressed in the MNS are developed into

requirements in the forms of CRDs and ORDs. CRDs act to provide ORD development

guidance for a mission area that forms a system of systems or family of systems. ORDs

translate the MNS and CRD requirements into detailed, refined performance capabilities for a

specific proposed system. [10]

Currently, an interoperability requirement is captured as an element of the CRD and

ORD architectures known as an Information Exchange Requirement (IER). IERs are defined as

part of the Operational View of the architecture and are specifically captured in an architectural

product known as the Operational Information Exchange Matrix. Figure 1 shows the data

requirements of the Information Exchange Requirement, as depicted in the DoD Architecture

Framework V2.0.

 17

The Operational Information Exchange Matrix (OV-3), shown in Figure 1, is one of the

many architectural products mandated by the DoD Architecture Framework. In fact, it is a

mandatory part of all CRDs, ORDS, and C4I Support Plans (C4ISP).1 These actions are a

good first step towards capturing system and software interoperability requirements, but they

have to date proven insufficient.

Figure 1. Operational Information Exchange Matrix (OV-3) – Representative Format

D. MAJOR SHORTCOMINGS OF CURRENT DOD PROCESSES

There are many shortcomings in both the DoD system acquisition process and the

current handling of architectures that are preventing meaningful usage of the IERs identified to

date. First, despite the mandatory architectural products, many systems are being fielded

without CRDs, ORDs and C4ISPs. This indicates a lack of discipline in our system acquisition

processes in that we continue to field systems that do not have validated requirements.

Additionally, while the system developers are asked to create the C4ISPs, they are not

1 C4ISPs contain all the information required to sustain a system (logistics plans, training

plans, architectural plans) throughout its lifecycle. They are required at certain milestone
decision steps for each DoD system, in accordance with the Government Information
Systems Reform Act (GISRA) and the Clinger-Cohen Act (CCA).

OPERATIONAL
INFORMATION
ELEMENT DESCRIPTION MEDIA SIZE UNITS

NAME/IDENTIFIER DEFINITION DIGITAL,
VOICE,
TEXT,
IMAGE,
ETC.

RANGE
LIMITS FEET,

LITERS,
INCHES,
ETC.

OPERATIONAL
ELEMENT &

ACTIVITY OPERATIONAL
ELEMENT &

ACTIVITY
IDENTIFIER

OF
PRODUCING

OE
PRODUCING

ACTIVITY IDENTIFIER
OF

CONSUMING
OE

CONSUMING
ACTIVITY

INFORMATION
SOURCE INFORMATION

SOURCE INFORMATION
DESTINATION INFORMATION
DESTINATION

FREQUENCY,
TIMELINESS,
THROUGHPUT SECURITY INTEROPERABILITY

REQUIREMENTS
INFORMATION EXCHANGE

ATTRIBUTES INFORMATION EXCHANGE
ATTRIBUTES INFORMATION

DESCRIPTION INFORMATION
DESCRIPTION

 18

responsible for creating the operational architecture products (requirements-driven) that are

contained within them. These products are the responsibility of the requirements community.

Second, the architectural information that is captured in these documents is located

within the confines of a paper document. There is no meaningful way to integrate this

information with that contained within similar documents. These documents meet a periodic

review cycle, but all too often they become ‘shelfware’ never to be referenced again after their

initial creation.

Third, there exists no central repository for the architectural information that does exist

within the CRDs, ORDs, and C4ISPs; and, therefore, there exists no methodology for ensuring

consistency between them. For instance, there is no formal method for ensuring that an IER that

the TBMCS ORD has documented with GCCS is, in turn, documented in the GCCS ORD in

reverse. (In truth, there exists to date several IERs between TBMCS and GCCS that cannot

be documented in reverse, as there exists no GCCS ORD) And, because these architectural

products cannot be maintained as ‘living’ documents with dynamic updating of requirements and

consistency between systems and functional areas, proper allocation of requirements to systems

cannot be accomplished.

Demonstrating these points, during a survey at HQ USPACOM conducted by a

combined CINC Interoperability/ Joint Forces Program Office team on 1 March 2000,

approximately sixteen documented or ongoing architecture efforts were revealed across the J2,

J3, and J6. Each effort was separate and distinct. Each was separately funded and initiated.

No centralized data repository existed even between these components of a single unified

command headquarters. [6] And since that time, the number of these disparate architecture

efforts has grown exponentially as architectures have become a mandatory part of the system

acquisition process.

E. SOFTWARE ENGINEERING AND INTEROPERABILITY

Interoperability is accomplished by first identifying data needed by other users or

systems, and then by arranging to share that data quickly enough that it is still useful upon receipt

 19

by those other users or systems. [2] Data, data exchanges, interfaces and data-driven

applications are all fall within the responsibility of the modern software engineer. Data formats

and database design, system interfaces designs, application design and implementation—all of

these activities fall into the realm of software engineering.

Some might argue that many interoperability problems are hardware problems. But,

diverse hardware-based communications systems require an overall software architecture in

order to interoperate. [3] Added to this, modern communications systems (which bear the

brunt of data requests and interchange problems) are software-intensive. Hardware is not easily

changed, and fielded hardware systems often cannot be wholly replaced. Therefore, as a

practical matter, interoperability is more easily achieved through software. [3]

And, so, as today’s systems become more complex and more inter-related, and the

requirements for seamless information flows and transfers grow faster than the technology, it is

clear that software engineers (and all system engineers) need a better architecture-based system

to capture and define interoperability requirements.

 20

THIS PAGE LEFT INTENTIONALLY BLANK

 21

IV. ENTERPRISE ARCHITECTURE FOR SOFTWARE INTEROPERABILITY

An object-oriented approach to enterprise architectures may be the solution that can

bring system developers, requirements experts, policy, and doctrine together to form a dynamic

approach to the systems and software requirements engineering processes and allow these all-

too-disparate communities to find a common ground for communication.

A. DEFINITION OF ENTERPRISE ARCHITECTURE

In its most basic form, an architecture is simply a description of objects and the

relationships between these objects. Any system, software, enterprise, or other architecture can

be described so.

Enterprise architecture provides a top-level model of how information flows across the

organizations within the enterprise domain. It identifies the key nodes, potential constraints, and

the relationships between these nodes. It is a cornerstone to integrating or updating

technologies and understanding what data is needed where and when. [6] In short, enterprise

architecture equates to a business modeling method.

 As with many methods, enterprise architectures can be used to demonstrate different

ideas and concepts depending on who is using them, and how they are used. On one side, they

can be used to describe business processes, information flows, and activities. In this sense,

enterprise architecture provides the underlying framework, which defines and describes the

platform required by the enterprise to attain its objectives and achieve its vision. [4] In this way,

enterprise architectures can be used to capture a common perspective--a common vision--of

how a business domain should function. The objects of the architecture may be activities,

grouped together into roles or functions, with required information flows representing the

relationships between the objects.

From another angle, enterprise architectures can be used to describe information

technology (IT) capabilities, their networks, and their functions. In this case, the architecture

provides a networking diagram, which defines the capabilities the enterprise has to achieve its

 22

objectives and vision. In this way, enterprise architectures can be used to capture existing

capabilities and future needs in any networking domain. The objects of this architecture may be

systems, their subcomponents, and the transactions that are required and/or supported between

these components.

B. BENEFITS OF ENTERPRISE ARCHITECTURE

Enterprise architectures provide a framework for modeling of business practices and

allocating systems to that framework. The techniques are extremely flexible and can be

designed to benefit a number of different communities, even within the same business domain.

For instance, enterprise architecture techniques can be used to capture warfighting doctrine

from the planning and requirements communities just as easily as it can be used to demonstrate

system-to-system interactions. And, it is just as easily adaptable to software integration

(relationship between software components and modules) as it is to system interoperability.

This is realized through recognition that the architecture is not a collection of paper drawings,

but is rather a structured database, by which the data elements can be related and viewed in any

number of ways, depending on the interests of each particular user (or sets of users).

When combined with the use of an object-oriented, relational architecture database that

can be easily updated, maintained, and reused, there are many benefits that can be realized over

the current processes. First, repeated duplication of efforts and multiple data requests would be

reduced. Instead of multiple architectural efforts which are geared towards a specific customer,

by incorporating a data-centric, central repository approach, all architectural efforts eventually

contribute to the corporate knowledge of the entire community. And, by embedding the data

and the use of that data into the business processes of the organization, the demand for (static)

products is reduced, if not eliminated. [6] Furthermore, enterprise architecture planning

considers both the strategic and tactical need for information exchange in supporting the

organization’s mission. Using a data-centric approach, time attributes would provide the

necessary information to improve contingency and resource planning and allocations. [5]

 23

C. NEW ARCHITECTURAL MODEL

The proposed architectural model uses an enterprise architecture approach to define,

capture, levy, and maintain system interoperability requirements. It is a data-centric, object-

oriented architectural model that focuses on the relationships between architectural elements, not

picture representations. Furthermore, it simplifies the current DoD models to capture only those

pieces of information required for achieving interoperability.

The model is designed to recognize the distinct needs of all a system’s stakeholders,

allowing for different architectural foci, constructed from the same underlying data. It is also

tailored to meet the ultimate goal of interoperable systems and forced, structured coordination

between the planning/requirements and acquisition communities.

Finally, the model spans time, allowing the various communities to incorporate the

concepts of time-phased requirements and spiral development.

D. ELEMENTS OF PROPOSED ARCHITECTURAL MODEL

1. Step One: Establish the Domain and All Its Stakeholders

In order to create a valid architecture, it is vital to have a clear understanding of the

environment that the architecture is intended to model and the questions/issues the architecture is

intended to answer. Example domains could be: a hospital; Air Force Command and Control;

a collection of integrated software components, like the Common Operating Environment, or

Microsoft Office; Theater Air and Missile Defense; the entire Department of Defense; a single

software application; or, all Federal Government Agencies. Domains can be very large or very

small, depending on the interest of the architect. There is no right or wrong answer or

approach, as long as the intentions are clear from the beginning and consistency is maintained

throughout. The domain also creates limits and brings discipline to the architectural process.

The desired result of this step is a definition of the domain of the architecture and a list

of all the stakeholders and their responsibilities with respect to the environment being modeled.

 24

For this thesis, I have chosen to storyboard the domain of home security. Within

that domain the following groups own some kind of stake in the systems of that domain:

Stakeholder Responsibilities
Homeowner Generates requirements based on his security desires
Monitoring Service Provides service based on homeowner demands
Emergency
Response Services

Responds as needed, maintains public systems

System Developers Responsible for engineering system components
System Installers Responsible for installing system components
System Maintainers Responsible for maintaining system components

Table 1. Architectural Domain Stakeholders

a. Users

The homeowner, monitoring service and emergency response services each

represent potential users of the developed system, and, thus, ultimately will drive the

requirements of the domain. In large commercial domains, such as this, it is nearly impossible to

reach a consensus of requirements between these disparate groups. Additionally, even with

consensus, it may not be feasible for the developer to include all users’ requirements in a single

release. In the Defense domain, where the user base is much smaller and more easily accessible

than usually found in commercial industry, and the systems and applications more tailored to

specific functions within the domain, it is much more likely to see a user directly involved in the

requirements generation aspect of a system—in fact, it is a basic tenet of Defense System

Acquisition. But, even in this semi-controlled environment, management of ever-changing

priorities and disparate user communities tracking and monitoring of requirements is an

enterprise-wide challenge.

In the architectural process, it is the users’/requirements community’s

responsibility to capture the requirements of their domain as elements of the architecture. The

proposed architectural model aids the requirements community by allowing them to capture their

domain requirements (activities, information exchanges, etc.) in a central architectural repository,

which can then be shared with other communities of interest. Information exchange

 25

requirements, which by definition occur between two or more activities, are automatically

assigned to the appropriate each activity (a required data element) eliminating the mismatches

between multiple paper requirements documents. Combined with a common data dictionary,

this approach also will prevent confusion and miscommunication between disparate

requirements and user communities.

b. Developers

System developers are responsible for implementing requirements, as defined

by the users or designated requirements community, into capabilities. In today’s defense and

commercial environments, it is often the case that the requirements of a domain will be met by

multiple systems (and, thus, system developers) and that often a single system will meet partial

requirements of many domains. Therefore, the system developer needs to understand how his

system fits into the integration of multiple systems within a single domain, and how it fits into the

integration across multiple domains.

With respect to the architecture, it is the responsibility of the system developer

to track the requirements that have been levied on his system and their implementation. He

reads the requirements data, as defined by the user community, and submits to the central

architecture repository his plans to implement these requirements as capabilities. In this way,

users and other interested communities can track when capabilities (including interoperabilities

between multiple systems) will be available to them.

c. System Installers and Maintainers

A centralized system architecture is even of use to the individual system

installers and maintainers, as it provides them cohesive insight into the current system

interactions and how those may change in the future. System installers and maintainers gain

insight from the architecture through a documented understanding of how the system is intended

to be employed and the other systems with which it is supposed to interact. Future and planned

 26

capabilities and requirements identify potential needs for installation and maintenance training

impacts.

2. Step Two: Understand Your Business

Within each domain, there may be several functional areas or mission areas that must be

further defined. These functional areas can be architected independently, but will normally be

linked via common requirements and common system implementations. Within each functional

area, it is necessary to accomplish the following:

– List/define all the activities required to execute the processes within the functional area

(hierarchically group activities, if required)

– Determine the necessary information exchanges between those activities

– Smartly aggregate activities into roles/nodes

The desired result of these steps is a complete activity model for each functional area

within the domain, grouped into actors/roles/nodes, with information exchanges identified

between these groupings.

a. Define Functional Areas

The identification of functional areas within the architectural domain is an

optional step, but particularly useful for any larger scale architectural efforts. Functional areas

provide a decomposition of the domain into smaller-scale and, thus, more manageable

architectural projects, allowing for better organization of and control over the architectural

process, as a whole.

If one was architecting the Department of Defense, example functional areas

could be Theater Air and Missile Defense, Command and Control, or Close Air Support. If

one was architecting a Microsoft Office competitor, example functional areas could be word

processing, graphics, spreadsheet design, or messaging.

It does not matter how the architectural effort is decomposed, as long as the

breakout is applied consistently throughout the architecture. The identification of the number

 27

and scope of the functional areas belongs in the realm of the requirements community, but

should be agreed to by all stakeholders. For smaller-scale efforts, the decomposition may not

be necessary, if proper configuration management of the architectural elements can be

maintained using a more global construct. However, all the activity modeling still applies.

In the continuing example of Home Security, I have chosen to architect the

following three functional areas: Intruder Detection & Response; Fire Detection & Response;

and Flood Detection & Response.

Functional Area Description
Intruder Detection &
Response

Home/Business Security. To monitor and detect
unauthorized entry into the secured area and sound
alarms/alert authorities, as necessary.

Fire Detection & Response General Security. To detect smoke and/or fire
within the monitored area and sound alarms/alert
authorities, as necessary.

Flood Detection & Response Home/Business Security. To detect flood
conditions (i.e. excess water levels) within the
monitored area and alert authorities, as necessary.

Table 2. Functional Area Descriptions

b. Define Activities Required to Execute the Functional Area

The identification of the activities required to execute each functional area is the

most critical aspect of the architecture development. It is the area that will require the most

research and most thorough understanding of the domain. It is also the most likely area of

contention and need for group consensus, and often the most time-consuming. The activities

will serve eventually as the fundamental basis for all other architectural products, and, therefore,

must be carefully considered and constantly reviewed to ensure they accurately portray the

functional area and the architect’s desired product.

As with other architectural elements, there is no right or wrong way to define an

activity, as long as the standard is applied consistently to the entire architecture. These activities

 28

eventually will serve as endpoints for interoperability requirements and as the basis for system

requirements and capabilities. Their use towards these ends must also be considered in the

architecture’s development to ensure the right level of detail is captured in the activity model.

Risks include creating an activity model that is too high-level and cannot support

requirements definition, as there is not enough detail to assign the requirements to any one

particular node or system. Furthermore, too much detail can slow the architecture process and

create a scalability factor that makes the rest of the effort intractable. These risks can be

reduced by taking a hierarchical approach to the activity modeling which allows for the data to

be viewed at whichever level of detail is appropriate to the user. For instance, if architecting the

functional area of Global Command and Control, one might look at high-level activities such as

Deployment Planning, Situational Awareness, and Intelligence Gathering and the interactions

between these activities. But, one may want to dive deeper to find out that within deployment

planning are subactivities, such as personnel deployment processing, equipment transport, and

in-theater resupply. The Universal Joint Task List (UJTL), the DoD’s listing of all warfighting

tasks, is an excellent example of an existing, hierarchically grouped activity model.

In the area of Home Security, the following activities were identified for each of

the functional areas:

Intruder Detection Fire Detection Flood Detection
Detect Door Opening Detect Smoke Detect Flood
Detect Window Opening Detect Heat Notify Monitoring Service
Activate Alarm Activate Alarm Notify Homeowner
Notify Monitoring Service Notify Monitoring Service
Notify Homeowner Notify Fire Department
Notify Police Notify Homeowner
Arm System Respond to Fire/Alarm
Disarm System
Investigate/Respond to Alarm

Table 3. Initial Activity List

 29

Each functional area should not draw from a separate and distinct list of

activities, however. For instance, it is not necessary for each functional area to contain the

activity “Notify Homeowner.” When the initial activity list is created, it is necessary to design it

in such a way as to promote sharing across the functional areas. Creating an activity tree that is

easily navigable by all parties is one way to promote this kind of cooperation. In the following

tables, I demonstrate one method for creating such a hierarchy.

Starting with the Intruder Detection & Response area, the listed activities are

grouped into similar categories.

 Figure 2. Intruder Detection Activity Groupings

As this is a new architecture effort, this list forms the basis for a universal activity

list. Other activities to be defined for other functional areas will build off this list such that

common activities need not be defined twice. If this were a modification or addition to an

existing architecture, it would be important during the activity definition phase to ensure that no

duplicate activities were being added to the system. This requires research and discipline on the

part of the architect in understanding the existing architectural elements.

 A5-1. Investigate/Respond to Security Alarm

A5. Emergency Response

 A4-2. Disarm System

 A4-1. Arm System

A4. System Operation
A3. Activate Alarm

 A2-3. Contact Police

 A2-2. Contact Homeowner

 A2-1. Contact Monitoring Service

A2. Make External Notifications

 A1-2. Detect Window Opening
 A1-1. Detect Door Opening

A1. Maintain Physical Security

Investigate/Respond to Alarm

Disarm System

Arm System
Notify Police

Notify Homeowner

Notify Monitoring Service

Activate Alarm

Detect Window Opening
Detect Door Opening

Intruder Detection Activities

 30

Continuing this task through the other functional areas, the following list of

activities is created:

A1. Maintain Physical Security
 A1-1. Detect Door Opening
 A1-2. Detect Window Opening
 A1-3. Detect Smoke
 A1-4. Detect Heat
 A1-5. Detect Flood
A2. Make External Notifications
 A2-1. Contact Monitoring Service
 A2-2. Contact Homeowner
 A2-3. Contact Police
 A2-4. Contact Fire Department
A3. Activate Alarm
A4. System Operation
 A4-1. Arm System
 A4-2. Disarm System
A5. Emergency Response
 A5-1. Investigate/Respond to Security Alarm
 A5-2. Respond to Fire Alarm

Table 4. Combined Activity List

After the initial round of activity modeling is complete, it is important to vet the

requirements through as many appropriate stakeholders as possible. One set of activities that

will likely to have been missed—and are of utmost importance to the developer, and thus, the

software engineer—is the set of derived activities. Derived activities are those that may not be

implicitly required but become necessary to fully exercise the domain. One example of a

derived activity is a decision point. For instance, in the above case, while the security system

may want to automatically notify the monitoring service in the case of any anomaly, there may be

some user intervention required to make a decision as to whether the situation warrants

homeowner or emergency services to respond. It is important to capture this decision-making

activity as it is not only part of the use-case for the functional area, but because it will generate

 31

information exchange requirements itself. The decision was made to group these decision points

separately from the notification activities, and, therefore, the final list of activities follows.

A1. Maintain Physical Security
 A1-1. Detect Door Opening
 A1-2. Detect Window Opening
 A1-3. Detect Smoke
 A1-4. Detect Heat
 A1-5. Detect Flood
A2. Make External Notifications
 A2-1. Contact Monitoring Service
 A2-2. Contact Homeowner
 A2-3. Contact Police
 A2-4. Contact Fire Department
A3. Activate Alarm
A4. System Operation
 A4-1. Arm System
 A4-2. Disarm System
A5. Situation Analysis/Decision Point
 A5-1. Decide if Homeowner Intervention is Required
 A5-2. Decide if Emergency Response is Required
A6. Emergency Response
 A6-1. Investigate/Respond to Security Alarm
 A6-2. Respond to Fire Alarm

Table 5. Final Activity List

c. Define Information Exchange Requirements Between Activities

Once an activity list is in relatively final form2 the next step to the architecture’s

development is to define the information exchange requirements between those activities. This

task should be completed without consideration of current system capabilities or organizational

structure. These will be considered in a later step. Rather, this should be constructed in an

idealistic manner of how things should work, as opposed to how they do. In the DoD, joint

2 Architectures are, by definition, living documents. However, in the initial development phase it is useful to
benchmark certain elements in order to create a baseline of architectural elements from which to grow. This
is especially important with respect to the activities, as they form the foundation for the rest of the
architecture’s development. While modifications to the activity list are possible, it is not recommended until
the architecture is more mature (i.e. the first round of inputs is completed for the rest of the elements.)

 32

doctrine is the key to determining interoperability requirements. Doctrine tells us how to fight

and how we fight determines interoperability requirements. Policy sets the bounds on

acceptable doctrine. [3]

In defining IERs, it is important to document not only the activities (endpoints of

the IER,) but also the Information Element that is to be exchanged. In cases where the same set

of activities is exchanging multiple pieces of information, this should be considered as multiple

IERs; and, likewise, in cases where one Information Element is being exchanged between

multiple sets of activities, this, too, should be considered as multiple IERs. However, in cases

where the same activities are exchanging the same Information Element in different functional

areas of the same architecture, this need not be captured twice, as the IER list will be available

to all architects within the domain, just as the activity list.

Use cases are particularly useful in the identification of IERs, and it is the

author’s methodology of choice. The key is to run through all the possible scenarios in

generating the IER list. But, regardless of the methods, the result of this task is a listing of all the

IERs applicable to the architectural domain.

Continuing the example of home security, a typical intruder scenario was

developed to identify the necessary IERs.

1) A door or window opening is detected.

2) The alarm is sounded and the monitoring service notified.

3) The monitoring service decides whether to notify the homeowner directly.

4a) If 3) is no, the alarm is reset and scenario stops.

4b) If 3) is yes, the homeowner is notified.

5) The monitoring service (with or without the input of the homeowner) decides

of the authorities need to be contacted.

6a) If 5) is no, the alarm is reset and the scenario stops.

6b) If 5) is yes, the authorities are contacted.

7) The authorities respond to the alarm.

 33

Based on this scenario, the following list of IERs was generated:

 Originating Activity Receiving Activity Information Element
1 A1-1. Detect Door Opening A2-1. Contact Monitoring Service Door Status
2 A1-1. Detect Door Opening A3. Activate Alarm Door Status
3 A1-2. Detect Window Opening A2-1. Contact Monitoring Service Window Status
4 A1-2. Detect Window Opening A3. Activate Alarm Window Status
5 A2-1. Contact Monitoring

Service
A5-1. Homeowner Intervention
Decision

Alarm Notification

6 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner

Intervention Decision

7 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner Alarm Notification

8 A2-2. Contact Homeowner A5-2. Emergency Intervention
Decision

Alarm Notification

9 A5-2. Emergency Intervention
Decision

A2-3. Contact Authorities

Intervention Decision

10 A5-2. Emergency Intervention
Decision

A2-3. Contact Authorities Alarm Notification

11 A2-3. Contact Authorities A6. Emergency Response Alarm Notification

Table 6. Intruder Detection IER List

Following in a similar fashion for the fire detection and flood detection functional

areas, the following IER Lists were generated:

 Originating Activity Receiving Activity Information Element
1 A1-3. Detect Smoke A2-1. Contact Monitoring Service Alarm Notification
2 A1-3. Detect Smoke A2-3. Contact Authorities Alarm Notification
3 A1-3. Detect Smoke A3. Activate Alarm Smoke Detection
4 A1-2. Detect Heat A2-1. Contact Monitoring Service Alarm Notification
5 A1-2. Detect Heat A2-3. Contact Authorities Alarm Notification
6 A1-2. Detect Heat A3. Activate Alarm Heat Detection
7 A2-1. Contact Monitoring

Service
A5-1. Homeowner Intervention
Decision

Alarm Notification

8 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner Intervention Decision

9 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner Alarm Notification

10 A2-3. Contact Authorities A6. Emergency Response Alarm Notification

Table 7. Fire Detection IER List

 34

 Originating Activity Receiving Activity Information Element
1 A1-5. Detect Flood A2-1. Contact Monitoring Service Flood Notification
2 A2-1. Contact Monitoring

Service
A5-1. Homeowner Intervention
Decision

Alarm Notification

3 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner Intervention Decision

4 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner Alarm Notification

5 A2-2. Contact Homeowner A6. Emergency Response Alarm Notification

Table 8. Flood Detection IER List

Just as with the activity lists, if these functional areas are architected

independently, it may be necessary to evaluate the IERs together to eliminate duplicity. The

table below shows the aggregate IER List:

 Originating Activity Receiving Activity Information Element
1 A1-1. Detect Door Opening A2-1. Contact Monitoring Service Door Status
2 A1-1. Detect Door Opening A3. Activate Alarm Door Status
3 A1-2. Detect Window Opening A2-1. Contact Monitoring Service Window Status
4 A1-2. Detect Window Opening A3. Activate Alarm Window Status
5 A2-1. Contact Monitoring

Service
A5-1. Homeowner Intervention
Decision

Alarm Notification

6 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner

Intervention Decision

7 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner Alarm Notification

8 A2-2. Contact Homeowner A5-2. Emergency Intervention
Decision

Alarm Notification

9 A5-2. Emergency Intervention
Decision

A2-3. Contact Authorities

Intervention Decision

10 A5-2. Emergency Intervention
Decision

A2-3. Contact Authorities Alarm Notification

11 A2-3. Contact Authorities A6. Emergency Response Alarm Notification
12 A1-3. Detect Smoke A2-1. Contact Monitoring Service Alarm Notification
13 A1-3. Detect Smoke A2-3. Contact Authorities Alarm Notification
14 A1-3. Detect Smoke A3. Activate Alarm Smoke Detection
15 A1-2. Detect Heat A2-1. Contact Monitoring Service Alarm Notification

 35

16 A1-2. Detect Heat A2-3. Contact Authorities Alarm Notification
17 A1-2. Detect Heat A3. Activate Alarm Heat Detection
18 A2-1. Contact Monitoring

Service
A5-1. Homeowner Intervention
Decision

Alarm Notification

19 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner Intervention Decision

20 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner Alarm Notification

21 A2-3. Contact Authorities A6. Emergency Response Alarm Notification
22 A1-5. Detect Flood A2-1. Contact Monitoring Service Flood Notification
23 A2-1. Contact Monitoring

Service
A5-1. Homeowner Intervention
Decision

Alarm Notification

24 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner Intervention Decision

25 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner Alarm Notification

26 A2-2. Contact Homeowner A6. Emergency Response Alarm Notification

Table 9. Aggregate IER List

 Originating Activity Receiving Activity Information Element
1 A1-1. Detect Door Opening A2-1. Contact Monitoring Service Door Status
2 A1-1. Detect Door Opening A3. Activate Alarm Door Status
3 A1-2. Detect Window Opening A2-1. Contact Monitoring Service Window Status
4 A1-2. Detect Window Opening A3. Activate Alarm Window Status
5 A2-1. Contact Monitoring

Service
A5-1. Homeowner Intervention
Decision

Alarm Notification

6 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner

Intervention Decision

7 A5-1. Homeowner Intervention
Decision

A2-2. Contact Homeowner Alarm Notification

8 A2-2. Contact Homeowner A5-2. Emergency Intervention
Decision

Alarm Notification

9 A5-2. Emergency Intervention
Decision

A2-3. Contact Authorities

Intervention Decision

10 A5-2. Emergency Intervention
Decision

A2-3. Contact Authorities Alarm Notification

11 A2-3. Contact Authorities A6. Emergency Response Alarm Notification
12 A1-3. Detect Smoke A2-1. Contact Monitoring Service Alarm Notification
13 A1-3. Detect Smoke A2-3. Contact Authorities Alarm Notification

 36

14 A1-3. Detect Smoke A3. Activate Alarm Smoke Detection
15 A1-2. Detect Heat A2-1. Contact Monitoring Service Alarm Notification
16 A1-2. Detect Heat A2-3. Contact Authorities Alarm Notification
17 A1-2. Detect Heat A3. Activate Alarm Heat Detection
18 A1-5. Detect Flood A2-1. Contact Monitoring Service Flood Notification

Table 10. Final IER List

By examining the IERs from all the functional areas together, we can see that 5,

18, and 23; 26, 11, and 21; 6, 19, and 24; and 7, 20, and 25 are duplicative. Therefore, 8

redundant IERs can be eliminated resulting in the final list of IERs applicable to the domain,

found in Table 10:

d. Smartly Aggregate Activities Into Roles/Nodes

At this point, all the activities and information exchange requirements between

those activities have been identified. Now, it is necessary to group these activities into roles (or

nodes) based on the needs of the functional area.

There are many different considerations to take into account when making these

groupings. First, you may want to cluster activities together that would normally be

accomplished by the same group, i.e. those activities that make sense to be together. Second,

you may want to cluster activities to eliminate the need for information exchanges, i.e. making

these exchanges intra-nodal instead of inter-nodal. This approach could reduce risk introduced

by system interoperability problems. If redundancy is important in the functional area (as it is in

many DoD functional areas,) it may make sense to assign activities to multiple roles. There

exists no right or wrong combination of these approaches--so long as by the end of the step, the

players/roles within the functional area have been defined and there is a clear assignment of

activities (requirements) and information exchange requirements between them.

Continuing with the home security example, the activities within the different

functional areas were aggregated as depicted in the following figures:

 37

Figure 3. Intruder Detection Roles

Figure 4. Fire Detection Roles

Figure 5. Flood Detection Roles

 A1. Maintain Physical Security
 A1-3. Detect Smoke
 A1-4. Detect Heat
 A2. Make External Notifications
 A2-1. Contact Monitoring Service
 A2-2. Contact Homeowner
 A2-3. Contact Authorities
 A3. Activate Alarm
 A5. Situation Analysis
 A5-1. Homeowner Intervention?
 A6. Emergency Response

System Controller

Smoke Detector

Heat Detector

Monitoring Service

Homeowner

Ext. Agency

 A1. Maintain Physical Security
 A1-5. Detect Flood
 A2. Make External Notifications
 A2-1. Contact Monitoring Service
 A2-2. Contact Homeowner
 A5. Situation Analysis
 A5-1. Homeowner Intervention?
 A6. Emergency Response

System Controller

Flood Sensor

Monitoring Service

Homeowner

System Controller

Homeowner

Monitoring Service

Door Sensor

Window Sensor

A1. Maintain Physical Security
 A1-1. Detect Door Opening
 A1-2. Detect Window Opening
A2. Make External Notifications
 A2-1. Contact Monitoring Service
 A2-2. Contact Homeowner

A2-3. Contact Authorities
A3. Activate Alarm
A4. System Operation
 A4-1. Arm System
 A4-2. Disarm System
A5. Situation Analysis
 A5-1. Homeowner Intervention?
 A5-2. Emergency Intervention?
A6. Emergency Response Ext. Agency

 38

Once a role is defined and activities assigned to it, the role inherits the

Information Exchange Requirements of those activities. It is in this manner that a role is given

responsibility for a particular IER. In the post-assignment analysis, it may be found that several

of these IERs will disappear from the top-level operational architecture, as both the originating

and receiving activities are contained within the same node. By looking at the example of home

security, the following “aggregated” IER list (by functional area) was created through such an

analysis:

 Originating
Role

Originating Activity Receiving
Role

Receiving Activity Information
Element

ID1 Door Sensor A1-1. Detect Door
Opening

System
Controller

A3. Activate
Alarm

Door Status

ID2 Window
Sensor

A1-2. Detect Window
Opening

System
Controller

A3. Activate
Alarm

Window
Status

ID3 System
Controller

A2-1. Contact
Monitoring Service

Monitoring
Service

A5-1.
Homeowner
Intervention
Decision

Alarm
Notification

ID4 Monitoring
Service

A2-2. Contact
Homeowner

Homeowner A5-2. Emergency
Intervention
Decision

Alarm
Notification

ID5 Homeowner

A5-2. Emergency
Intervention Decision

Monitoring
Service

A2-3. Contact
Authorities

Intervention
Decision

ID6 Monitoring
Service

A2-3. Contact
Authorities

Emergency
Response
Agency

A6. Emergency
Response

Alarm
Notification

Table 11. Intruder Detection Aggregated IER List

 Originating
Role

Originating Activity Receiving
Role

Receiving Activity Information
Element

FD1 Smoke
Detector

A1-3. Detect Smoke System
Controller

A3. Activate
Alarm

Smoke
Detection

FD2 Heat
Detector

A1-2. Detect Heat System
Controller

A3. Activate
Alarm

Heat Detection

 39

FD3 System
Controller

A2-1. Contact
Monitoring Service

Monitoring
Service

A5-1.
Homeowner
Intervention
Decision

Alarm
Notification

FD4 Monitoring
Service

A2-2. Contact
Homeowner

Homeowner A6. Emergency
Response

Alarm
Notification

FD5 System
Controller

A2-3. Contact
Authorities

Emergency
Response
Agency

A6. Emergency
Response

Alarm
Notification

Table 12. Fire Detection Aggregated IER List

 Originating
Role

Originating Activity Receiving
Role

Receiving Activity Information
Element

FL1 Flood
Sensor

A1-5. Detect Flood System
Controller

A2-1. Contact
Monitoring Service

Flood
Notification

FL2 System
Controller

A2-1. Contact
Monitoring Service

Monitoring
Service

A5-1.
Homeowner
Intervention
Decision

Alarm
Notification

FL3 Monitoring
Service

A2-2. Contact
Homeowner

Homeowner A6. Emergency
Response

Alarm
Notification

Table 13. Flood Detection Aggregated IER List

Through this exercise, we see that the list of 18 previous IERs within the domain

has been reduced to 14, thus simplifying the internodal dependencies for the functional area.

Depending on how systems are implemented within the domain, these 4 IERs may yet still be

system interoperability requirements (some nodes may be made up of multiple systems,) but this

aspect of the architecture will be accounted for in later steps.

This particular activity (of defining nodes) gains particular strength when using a

data-centric approach to the architecture. In his design of a functional area, the architect may

choose only certain activities for certain roles. But because all the activities within his functional

area (and the entire domain, for that matter) are visible to the architect at any time, it is relatively

easy to expand a role if it becomes necessary later in the architecture’s development.

 40

e. Role-Centric Architecture – Operational Perspective

The tasks embedded in Step Two focused on the creation of activities,

information exchange requirements and roles. Put together, these objects and the defined

relationships between them are the foundation for the Operational Perspective of the Role-

centric Architecture. Role-centric architectures are intended to be of greatest to use to the

planning community. Requirements developers, users, any stakeholder who has direct impact

on the operational requirements of a system gains the most benefit from the information the role-

centric architectures contain. To complete the operational portion of the role-centric

architecture, activities were defined and hierarchically organized (parent-child activities defined),

Information Exchange Requirements were identified as need-lines between activities, and

Roles were defined as groupings of these activities. The beginning of the proposed architectural

data model, capturing these relationships, is included in Figure 6.

Figure 6. Operational Perspective, Role-Centric Architecture Data Model3

3 Although objects in the model contain attributes, these are provided as an example of the types of
attributes that may want to be considered. These may change depending on the focus of the architecture
and should not be considered as the only attributes that may be assigned these elements.

Info Exch Reqt

title
description
priority
frequency
latency
dates valid

Role
name
description

1.
*

1

1

Activity
name
description

*

1

Information Element

title
description

associated

 41

To this point, the interoperability requirements for the domain are defined and

have been assigned (along with their parent activities) to nodes within the domain. Now it is a

matter of assigning these activities and IERs to systems while providing a framework for growth

and maintenance.

3. Step Three: Document Your Capabilities

In order to assign activities to systems, it is necessary to first understand the current

capabilities of the systems that are available to a given functional area. This involves first

documenting current system capabilities in the same terms in which operational activities were

defined. After that step is complete, system interfaces are defined in the same terms in which

information exchange requirements were defined.

Like activities, the architecture supports the concept of embedded systems. A system

may be stand-alone, or may be part of a system of systems or family of systems. In this way,

the architecture also supports viewing systems at a micro-level. A single software application

can be broken into its separate modules to show which of those modules perform which

activities and where within the application the interface to the external system lies. In this way,

the architecture can be used to capture threads and traces within a system.

Additionally, this feature is useful to system integrators who are responsible for fielding a

system of integrated components—often seen in the DoD, and often with the integrator having

little to no time during software code and development. For instance, the Global Command and

Control System is comprised of several software applications, like JOPES, COP, GSORTS,

TRANSCOP, and I3, just to name a few. This methodology, if applied to its fullest, can be

used to show not only how GCCS interacts with it external systems, but how the components of

GCCS interact with each other to complete the requirements of the functional area. Instead of

looking at the architecture from the perspective of interoperability, one could easily go a few

levels deeper in detail to look at the architecture from the perspective of integration.

 42

Systems with improper documentation may have to be reverse engineered to complete

this step. Although reverse engineering can be a costly endeavor, it is vitally important to the

remainder of the architecture that a comprehensive understanding of system capabilities is

available within the architecture. If a completely new domain is being architected, this step may

not be necessary; however, it can be used to conduct market research and document

commercial technologies that may be available when it comes time to develop and field systems.

The result of this step will be a standardized repository for all system capabilities and interfaces.

These results should be made available to all architects within the domain, as system

capabilities do not change with functional areas.

To continue the storyboarded example, a hypothetical ‘market analysis’ was completed

to determine what systems are available that can meet the objectives defined in the operational

perspective of our role-centric architecture. Candidate systems were identified and system

capabilities were matched up against the activities defined in the previous step. If a system was

capable of achieving this activity, this was documented as a system function. If a system was

capable of exchanging information with another system, this was documented as a system

information exchange capability (SIEC). Like their related IERs, SIECs are documented

between system pairs and associated with an information element. The ‘results’ of this market

survey are included in the tables below:

 System Functions System Information Exchange Capabilities
Sens1 A1-1, A1-2 Cont1(ID1) Cont1(ID2)
Sens2 A1-1 Cont2(ID1) Cont3(ID1)
Sens3 A1-2 Cont1(ID2) Cont2(ID2)
Sens4 A1-2 Cont3(ID2)
Sens5 A1-3, A1-4 Cont1(FD1) Cont1(FD2)
Sens6 A1-3 Cont1(FD1) Cont2(FD1)
Sens7 A1-5 Cont1(FD1) Cont2(FD1)

Table 14. Sensor Market Survey Results

 43

 System Functions System Information Exchange Capabilities
Cont1 A4-1, A4-2, A3, A2-

3
Sens1(ID1) Sens1(ID2) Sens6(FD1)
Sens5(FD1) Sens5(FD2) Sens7(FL1)

Cont2 A4-1, A4-2, A2-1,
A2-3

Sens2(ID1) Sens3(ID2) Sens6(FD1)
Mon2(ID3) Sens2(ID1) Sens5(FD2)
Sens5(FD1)

Cont3 A4-1, A4-2, A2-1,
A3

Sens1(ID1) Sens2(ID1) Sens7(FL1)
Sens4(ID2) Mon2(ID3) Sens6(FD1)

Table 15. System Controller Market Survey Results

 System Functions System Information Exchange Capabilities
Mon1 A2-3 Police1(ID6) Fire1(FD5)
Mon2 A2-3 Cont2(ID3) Cont3(ID3)

Police2(ID6) Fire2(FD5)

Table 16. Monitoring Service System Market Survey Results

 System Functions System Information Exchange Capabilities
Police1 A6 Mon1(ID6)
Police2 A6 Mon2(ID6)
Fire1 A6 Mon1(FD5)
Fire2 A6 Mon2(FD5)

Table 17. External Agency System Market Survey Results

 System Functions System Information Exchange Capabilities
Phone A5-2, A6 Mon1(ID4) Mon2(ID4)

Mon1(ID5) Mon2(ID5)
Mon1(FD4) Mon2(FD4)
Mon1(FL3) Mon2(FL3)

Table 18. Homeowner System Market Survey Results

There are a few items of particular note as a result of this market survey. First, is to

note that while external agency ‘systems’ may not be under the control of the functional area

manager, it is important that the capabilities of these systems are also captured, as

communication with them is imperative to the completion of the mission. For instance, these

 44

systems may be the 911 emergency response system and, perhaps, a direct feed from the

security service into a town’s police or fire department. Later, when selecting which monitoring

service systems to implement for the functional area, it will be important to know which of these

systems support the direct feed and which rely on another system—namely the 911 response

operators and the phone company.

Second, even communications networks that might be considered global and

standard—like the phone system—need to be documented. If activities within the functional

area are expected to be reliant on these systems, that reliance needs to be captured. For

instance, it is likely that in any of the circumstances in which the homeowner needs to be

contacted, that they will first be contacted by phone. Completion of these activities is reliant on

that phone and phone system, and, therefore, this needs to be documented within the

architecture.

Third, note that each interface is documented with two system identifiers and an IER

identifier. Furthermore, each interface is listed twice, once under each system endpoint. Even

in this very simple example, the more central systems have as many as 8 SIECs associated with

them. In larger functional areas with many more systems, this number can grow exponentially.

This highlights the need for a centralized database to track these relationships and dependencies.

Without it, it would be impossible to maintain consistency and currency within the architecture.

Lastly, note that each system function and interface is defined in terms of the operational

architecture established in Step Two. Without this, the information captured in the architecture

is virtually useless, as it will become impossible to track capabilities to requirements (especially

as the architecture grows.)

a. System-Centric Architecture – Capabilities Perspective

In this step, the focus was on the relationships between systems, system

functions and system information exchange capabilities. These objects and associations can be

added to the proposed architectural data model as shown in Figure 7.

 45

It is important to note in the data model that while there can be any

combinations of relationships between systems and activities, that a system function is a mapping

of only one system to one activity. Also, note that while an IER was an association between

two activities described by an information element, an SIEC is an association between two

system functions (which are in themselves associations between a system and an activity)

described by and Information Element. Therefore, the SIEC is an association in which five

previously defined objects take part. And, because an SIEC has a direct attachment to the

Information Element and not the IER, it is possible to document capabilities that are not driven

by a documented requirement. This will not be true on the requirements side of the system-

centric architecture.

Figure 7. Data Model Relationship between Operational Perspective, Role-Centric and Capabilities
Perspective, System-Centric Architectures

Role
name
description

1..*

*

1

1

Info Exch Reqt
title
description
priority
frequency
latency
dates valid

Activity
name
description

System
name
description

System Function

name
description
dates valid

1

1

Info Exch Capability
name
description
format
transfer network
size/bandwidth reqt
speed of transfer

*

1

associated with
1
*

1 Information Element
title
description

*

1

 46

In Step Three, the relationship between systems, system functions, and system

information exchange capabilities was explained. These objects and their associations

collectively are known as the Capabilities Perspective of the System-Centric Architecture.

System-centric architectures are intended to be of greatest use to the developer, integrator, and

other stakeholders of the domain that are directly responsible for a systems’ implementation.

Hence, they are focused upon a particular system, as opposed to a functional area.

In the next step, this information will be analyzed to determine which of today’s

systems can meet the roles that were identified previously in Step Two.

4. Step Four: Determine What Systems are Capable of Meeting What
Roles

The next step is to compare the capabilities of today’s systems to the activities outlined

in the Role-centric architecture to answer two primary questions:

1) Which of today’s systems are capable of meeting operational requirements as

outlined in the role-centric architecture?

2) Where are there gaps in current capabilities for which new systems or capabilities

must be procured?

To complete this step, the activities each system is capable of performing and the

interfaces they can support are compared to the activities and IERs that were outlined for each

node. Systems are then assigned to nodes based on those comparisons.

It is possible for systems to be assigned to multiple nodes, even within the same

functional area. Additionally, multiple systems may be capable of fulfilling any one role and

many systems may be tasked to multiple functional areas. For instance, in the functional area of

Close Air Support, there is a role called Air Interdictor—a plane that can attack targets on the

ground. There are many planes in the current inventory capable of fulfilling this role: A-10,

AC-130, F-14, F-15, F-16, F-18, etc. Furthermore, any one of these aircraft could be called

in to fulfill a role in another functional area, such as Combat Air Patrol, Air-to-Air Superiority,

or Force Protection. This is expected and perfectly acceptable, especially as we acquire more

 47

multi-role weapons systems. In fact, it is important to understand all the systems that are

capable of fulfilling each role, and all the other systems that could be fielded together to achieve

a functional area in order for the full scope of interoperability requirements to be realized. The

end result of this step will be an assignment of systems (or groups of systems) to roles and an

analysis of what requirements cannot be met by today’s systems.

a. Assigning Systems to Roles

In the ongoing example of Home Security, systems were assigned to the roles

outlined in the role-centric architecture based on the activities they could perform. For example,

Sensor 1 is capable of acting as both a Door Sensor and a Window Sensor, and is, therefore,

assigned to both roles. However, Sensor 2 can only be used as a Door Sensor, and so is only

assigned to the one role. Using this type of analysis, systems were assigned to roles in the

following manner:

 System Functions System Information Exchange Capabilities Roles
Sens1 A1-1, A1-2 Cont1(ID1) Cont1(ID2) ID-Door Sensor

ID-Window Sensor
Sens2 A1-1 Cont2(ID1) Cont3(ID1) ID-Door Sensor
Sens3 A1-2 Cont1(ID2) Cont2(ID2) ID-Window Sensor
Sens4 A1-2 Cont3(ID2) ID-Window Sensor
Sens5 A1-3, A1-4 Cont1(FD1) Cont1(FD2) FD-Smoke Detector

FD-Heat Detector
Sens6 A1-3 Cont1(FD1) Cont2(FD1) FD-Smoke Detector
Sens7 A1-5 Cont1(FL1) Cont3(FL1) FL-Flood Sensor

Table 19. Sensor Assignments to Roles

 System Functions System Information Exchange Capabilities Roles
Cont1 A4-1, A4-2, A3,

A2-3

Sens1(ID1) Sens1(ID2) Sens6(FD1)
Sens5(FD1) Sens5(FD2) Sens7(FL1)

ID-System Controller
FD-System Controller
FL-System Controller

Cont2 A4-1, A4-2,
A2-1, A2-3

Sens2(ID1) Sens3(ID2) Sens6(FD1)
Mon2(ID3) Sens2(ID1) Sens5(FD2)
Sens5(FD1)

ID-System Controller
FD-System Controller

 48

Cont3 A4-1, A4-2, A2-
1, A3

Sens1(ID1) Sens2(ID1) Sens7(FL1)
Sens4(ID2) Mon2(ID3) Sens6(FD1)

ID-System Controller
FD-System Controller
FL-System Controller

Table 20. System Controller Assignments to Roles

 System Functions System Information Exchange Capabilities Roles
Mon1 A2-3 Police1(ID6) Fire1(FD5) I-Monitoring Service

F-Monitoring Service
FL-Monitoring Service

Mon2 A2-3 Cont2(ID3) Cont3(ID3)
Police2(ID6) Fire2(FD5)

I-Monitoring Service
F-Monitoring Service
FL-Monitoring Service

Table 21. Monitoring System Assignments to Roles

In all likelihood, not all the systems will be capable of performing every activity

and of supporting every interface. When it comes time to implementing actual combinations of

systems, many considerations may affect the final decision. For instance, in the Fire Detection

Functional Area, Sensor 5 is only capable of talking to Controller 1 and, likewise, Sensor 6 is

only capable of communicating with Controller 2. However, Sensor 5 is also the only sensor

capable of sensing heat. It is also important when making these assignments to also remember

that a parent system, by definition, brings with it all of its children. Additionally, it is of note that

Controller 2 was not assigned to the Flood Detection functional area. Although a ‘System

Controller’ by name (and, therefore, likely to be considered for this role), the analysis revealed

that Controller 2 did not support any of the flood detection activities or interfaces and,

therefore, was not well suited to that functional area.

There are many areas where tradeoffs will have to be considered when making

a final implementation decision. But, this data-driven approach to architecture will provide the

necessary information to make those decisions.

 49

b. Role-Centric Architecture – Systems Perspective

This mapping of systems to roles, based on the activities they can perform has provided a link

between the Operational Perspective of the Role-Centric Architecture and the Capabilities

Perspective of the System-Centric Architecture. (See Figure 8)

The only change to the data model is the adding of an unattributed association

between a system and a role, which is depicted in Appendix A and subsequent views of the

model. Additionally, it is important to recognize that there is no difference in the data contained

in the Capabilities Perspective of the System-Centric architecture and Figure the Systems

Perspective of the Role-Centric Architecture. In fact, the exact subset of data makes up both.

The difference is rather in the manner in which the data is viewed and used. In the Capabilities

Perspective, the focus is on a single system and all its capabilities regardless of functional area.

Figure 8. Relationship between Role-Centric and System-Centric Architectures (Partial)

In the Systems Perspective of the Role-Centric Architecture, the focus is on the

functional area and the combined capabilities of all the systems that have been assigned to that

functional area.

Operational
View

Role
Activity
IER

Role-Centric Architecture System-Centric Architecture

System View

System
System Function
SIEC

 Capabilities
View

System
System Function
SIEC

System capabilities are used to determine what
requirements/roles can be met by today’s

systems

 50

With systems assigned to roles, the operational requirements of those roles can

be levied in turn back onto the systems community to fill in the gaps in capability that were

revealed during the analysis.

5. Step Five: Levy Interoperability Requirements on Systems

At this point, the architect has successfully identified the needs of his functional area (in

terms of roles, activities, and IERs), the capabilities of available systems (in terms of systems,

functions, and SIECs), and done the first part of analysis to determine how his current systems

meet the needs of his functional area. It is now necessary to close the loop by determining

which of his operational needs could not be met by today’s systems and levying those back on

system developers in terms of tomorrow’s requirements. As has been discussed previously,

operational interoperability requirements determine system interoperability requirements [3].

But this determination could not have been made properly without the work of the previous four

steps.

To complete this step, the systems will inherit the interoperability requirements of the

activities to which they are assigned. This becomes the basis of all future interoperability

requirements and testing. Operational activities get levied on systems in the form of system

requirements. And IERs get levied on systems in the form of System Information Exchange

Requirements.

In functional areas where there are multiple systems assigned to roles, it is important to

propagate the entire spectrum of combinatory possibilities as requirements. For instance, the

role of the Air Interdictor in the Close Air Support functional area was previously discussed. If

this role had an IER with another role in the functional area, suppose an Airborne Command

Node. Then all the aircraft assigned to the Air Interdictor role (A-10, AC-130, F-14, F-15, F-

16, F-18) would be given that IER with all the aircraft assigned to the Airborne Command role

(AWACS, P-3, JSTARS), for a total of 18 SIERs generated from the 1 IER.

Gap analyses can be lengthy and complex. One benefit of the centralized database is

that it allows tools to be developed that can accomplish this gap analysis automatically. This

 51

step ultimately results in documented operational requirements for all the systems in the domain

and, possibly, an identification of need for additional systems.

Continuing with the example of home security, a gap analysis was performed of current

system capabilities versus requirements to identify any holes.

 Roles Sys Reqts Sys Funcs SIERs SIECs
Cont1 ID-System Controller

FD-System Controller
FL-System Controller

A2-1
A3
A4-1
A4-2
A2-3

A4-1
A4-2
A3
A2-3

Sens1(ID1)
Sens2(ID1)
Sens1(ID2)
Sens3(ID2)
Sens4(ID2)
Mon1(ID3)
Mon2(ID3)
Sens5(FD1)
Sens6(FD1)
Sens5(FD2)
Mon1(FD3)
Mon2(FD3)
Fire1(FD5)
Fire2(FD5)
Sens7(FL1)
Mon1(FL2)
Mon2(FL2)

Sens1(ID1)
Sens1(ID2)
Sens6(FD1)
Sens5(FD1)
Sens5(FD2)
Sens7(FL1)

Cont2 ID-System Controller
FD-System Controller

A2-1
A3
A4-1
A4-2
A2-3

A4-1
A4-2
A2-1
A2-3

Sens1(ID1)
Sens2(ID1)
Sens1(ID2)
Sens3(ID2)
Sens4(ID2)
Mon1(ID3)
Mon2(ID3)
Sens5(FD1)
Sens6(FD1)
Sens5(FD2)
Mon1(FD3)
Mon2(FD3)
Fire1(FD5)
Fire2(FD5)

Sens2(ID1)
Sens3(ID2)
Sens6(FD1)
Mon2(ID3)
Sens2(ID1)
Sens5(FD2)
Sens5(FD1)

Cont3 ID-System Controller
FD-System Controller

A2-1
A3

A4-1
A4-2

Sens1(ID1)
Sens2(ID1)

Sens1(ID1)
Sens2(ID1)

 52

FL-System Controller A4-1
A4-2
A2-3

A2-1
A3

Sens1(ID2)
Sens3(ID2)
Sens4(ID2)
Mon1(ID3)
Mon2(ID3)
Sens5(FD1)
Sens6(FD1)
Sens5(FD2)
Mon1(FD3)
Mon2(FD3)
Fire1(FD5)
Fire2(FD5)
Sens7(FL1)
Mon1(FL2)
Mon2(FL2)

Sens7(FL1)
Sens4(ID2)
Mon2(ID3)
Sens6(FD1)

Table 22. System Controller Gap Analysis

 Roles System
Requirements

System
Functions

System
Information
Exchange
Requirements

System
Information
Exchange
Capabilities

Sens1 ID-Door Sensor
ID-Window Sensor

A1-1
A1-2

A1-1
A1-2

Cont1(ID1)
Cont1(ID2)
Cont2(ID1)
Cont2(ID2)
Cont3(ID1)
Cont3(ID2)

Cont1(ID1)
Cont1(ID2)

Sens2 ID-Door Sensor A1-1 A1-1 Cont1(ID1)
Cont2(ID1)
Cont3(ID1)

Cont2(ID1)
Cont3(ID1)

Sens3 ID-Window Sensor A1-2 A1-2 Cont1(ID2)
Cont2(ID2)
Cont3(ID2)

Cont1(ID2)
Cont2(ID2)

Sens4 ID-Window Sensor A1-2 A1-2 Cont1(ID2)
Cont2(ID2)
Cont3(ID2)

Cont3(ID2)

Sens5 FD-Smoke
Detector
FD-Heat Detector

A1-3
A1-4

A1-3
A1-4

Cont1(FD1)
Cont1(FD2)
Cont2(FD1)
Cont2(FD2)

Cont1(FD1)
Cont1(FD2)

 53

Cont3(FD1)
Cont3(FD2)

Sens6 FD-Smoke
Detector

A1-3 A1-3 Cont1(FD1)
Cont2(FD1)
Cont3(FD1)

Cont1(FD1)
Cont2(FD1)

Sens7 FL-Flood Sensor A1-5 A1-5 Cont1(FL1)
Cont3(FL1)

Cont1(FL1)
Cont3(FL1)

Table 23. Sensor Gap Analysis

 Roles System
Requirements

System
Functions

SIERs SIECs

Mon1 ID-Monitoring Service
FD-Monitoring Service
FL-Monitoring Service

A2-2
A2-3
A5-1
A5-2

A2-3 Cont1(ID3)
Cont2(ID3)
Cont3(ID3)
Phone(ID4)
Phone(ID5)
Police1(ID6)
Police2(ID6)
Cont1(FD3)
Cont2(FD3)
Cont3(FD3)
Phone(FD4)
Cont1(FL2)
Cont3(FL2)
Phone(FL3)

Police1(ID6)
Fire1(FD5)

Mon2 ID-Monitoring Service
FD-Monitoring Service
FL-Monitoring Service

A2-2
A2-3
A5-1
A5-2

A2-3 Cont1(ID3)
Cont2(ID3)
Cont3(ID3)
Phone(ID4)
Phone(ID5)
Police1(ID6)
Police2(ID6)
Cont1(FD3)
Cont2(FD3)
Cont3(FD3)
Phone(FD4)
Cont1(FL2)
Cont3(FL2)
Phone(FL3)

Cont2(ID3)
Cont3(ID3)
Police2(ID6)
Fire2(FD5)

Table 24. Monitoring System Gap Analysis

 54

There are many observations that can be made as a result of this gap analysis. In most

cases, the analysis has shown holes between our requirements and capabilities that can be levied

as future requirements on our systems. However, there are a few exceptions:

1) In the case of the monitoring service systems, it is noted there are several activities

that are currently not being met by the system capabilities. However, upon further examination,

activities 5-1 and 5-2 are decision-making activities to be accomplished by the role of

monitoring service, and are not necessarily system activities. These need not be levied on the

systems for future development unless it is desired that the systems start making these decisions

in the future (which may or may not be likely.)

2) Also looking at the monitoring service systems, there are SIECs listed that do not

match up against any known SIERs. For instance, the ability to communicate with the Fire

Department is desired at the System Controller level. However, this is an existing capability

regardless of requirement. Therefore, it is perfectly valid for it to be documented in the

architecture. And, in this case, would be useful for the architect to know as none of his system

controllers are currently capable of completing this task. (It may be possible to re-route this

information through the monitoring service as an interim until a system fix can be made at the

controller level.) This, again, highlights one of the advantages of this approach to systems

requirements and tracking.

3) With regards to the sensors, the analysis shows that while the sensors meet all their

functional requirements, they lack severely in the interoperability capabilities. This is the

intended outcome of this methodology—to clearly show where there are systems currently in

the field, conducting tasks, that do not meet the interoperability needs of today’s users.

The solution is simple: the DoD needs a structured methodology by which to define

these interoperability requirements, levy them on systems and track them through

implementation.

Through this last step, the feedback between operational requirements and system

requirements is complete. Using the information gathered regarding the capabilities of today’s

systems, a thorough understanding of where system shortfalls lie, and where requirements are

 55

lacking has been gained. The relationship between the Role-Centric and System-Centric

architectures is complete.

The mapping of activities and IERs back onto systems has resulted in two additions to

the data model: system requirements and system information exchange requirements.

Similar to a system function, the system requirement is an association between an activity

and a system. Likewise, an SIER is a mapping between and IER and two system

requirements. The completed data model is located in Appendix A.

Figure 9. Relationship between Role-Centric and System-Centric Architecture (Complete)

6. Step Six: Prepare for the Future

The final step of this methodology is a continuous activity. These proposed

architectures and methods represent living representations of the domain and should maintained

over time to reap optimal benefits from the architectures. But, in order to accomplish this, the

elements of the architecture must be attributed to facilitate the concept of time. Through time-

phasing, the architecture can be adapted to document future requirements, future and planned

capabilities, and can help align software systems that are in orthogonal spirals of the spiral

development process.

Operational
View

Role
Activity
IER

Role-Centric Architecture System-Centric Architecture

System View

System
System Function
SIEC

Requirements
View

System
Requirement
SIER

Capabilities
View

System
System Function
SIEC

System capabilities are used to determine what
requirements/roles can be met by today’s

systems

Information
Exchange Requirements are levied on systems based
on the roles the system is expected to perform

 56

a. Time-Phasing Requirements

Each element of the proposed architecture has the ability to be attributed with a

period of time over which it is valid. Requirements generally will not change as often as systems

do, especially in the defense world, as it has often been argued that new technologies do not

fundamentally change the way we fight wars. However, new initiatives like Joint Vision 2010,

Joint Vision 2020, C4I for the Warrior, and other programs that look at how we can change the

way we fight based on the capabilities of today’s systems drive us towards new requirements

for our systems of the future.

These requirements can be captured in the same architecture used to document

today’s requirements by using a date stamp on each architectural element. In this way, system

developers will be able to anticipate the requirements of their systems one, two, or even 10 to

20 years down the line. One suggestion for the defense and government sectors is that

requirements be adjusted around the POM cycle—a five-year cycle through which future

budgets are planned. This would provide a mechanism to better align programmatic dollars

where the requirements are going to be.

In the process of time-phasing requirements, there are two types of

requirements that must be reviewed. First are the operational requirements of the domain or

functional area—those that were captured in the operational perspective of the role-centric

architecture. When phasing these requirements, the architect would approach for a more

‘visionary’ stance. How should this functional area be conducted in 5 years? How can we

better align these activities to fight the wars of the future? What benefits can I reap from

the systems that are coming down line to further decentralize my execution and eliminate

multiple command and communication nodes? These are the types of considerations that

can be made when looking at the role-centric architectures of tomorrow.

There are also those operational requirements as they were levied on the

systems, in the forms of system requirements and SIERs. It is unlikely that the system

requirements will have the same lifespan as their operational parents; again as our systems are

likely to change more often than the way we conduct current operations. When phasing these

 57

requirements, the architect must take an approach that mixes ‘vision’ with ‘reality.’ For

instance, the architect might decide he can better serve a functional area with the introduction of

a new multi-role fighter in 5 to 7 years—one that takes on many of the activities outlined in the

architecture to reduce the number of fielded systems. This is an example of more visionary

thinking. However, the architect must also consider that the new Joint Strike Fighter (JSF), for

instance, is going to replace other aging aircraft; so requirements that used to be on the F-16

and F-18, for instance, need to be moved to the JSF at the appropriate time in the future. This

is an example of reality-based phasing.

Incorporating a time-phased approach to requirements into part of the Home

Security example, we might decide that in the Intruder Detection Functional Area, that today’s

requirements of door and window intrusion detection are sufficient for today; but, in ten years it

will be necessary to also detect wireless cyber-intrusion. In that case, the operational

requirements of the functional area would be updated to include a new activity with all the

necessary IERs.

 Description Dates Valid
A1. Maintain Physical Security 200201 - 202201
 A1-1. Detect Door Opening 200201 - 202201
 A1-2. Detect Window Opening 200201 - 202201
 A1-3. Detect Smoke 200201 - 202201
 A1-4. Detect Heat 200201 - 202201
 A1-5. Detect Flood 200201 - 202201
 A1-6. Detect Cyber-Intrusion 201201 - 202201
A2. Make External Notifications 200201 - 202201
 A2-1. Contact Monitoring Service 200201 - 202201
 A2-2. Contact Homeowner 200201 - 202201
 A2-3. Contact Police 200201 - 202201
 A2-4. Contact Fire Department 200201 - 202201
A3. Activate Alarm 200201 - 202201
A4. System Operation 200201 - 202201
 A4-1. Arm System 200201 - 202201
 A4-2. Disarm System 200201 - 202201
A5. Situation Analysis/Decision Point 200201 - 202201

 58

 A5-1. Decide if Homeowner Intervention is Required 200201 - 202201
 A5-2. Decide if Emergency Response is Required 200201 - 202201
A6. Emergency Response 200201 - 202201
 A6-1. Investigate/Respond to Security Alarm 200201 - 202201
 A6-2. Respond to Fire Alarm 200201 - 202201

Table 25. Updated Activity List

 Originating
Role

Originating
Activity

Receiving
Role

Receiving Activity Information
Element

Dates
Valid

ID
1

Door
Sensor

A1-1. Detect
Door Opening

System
Controller

A3. Activate
Alarm

Door Status 200201
–
202201

ID
2

Window
Sensor

A1-2. Detect
Window Opening

System
Controller

A3. Activate
Alarm

Window
Status

200201
–
202201

ID
3

System
Controller

A2-1. Contact
Monitoring
Service

Monitoring
Service

A5-1.
Homeowner
Intervention
Decision

Alarm
Notification

200201
–
202201

ID
4

Monitoring
Service

A2-2. Contact
Homeowner

Homeowner A5-2. Emergency
Intervention
Decision

Alarm
Notification

200201
–
202201

ID
5

Homeowner

A5-2. Emergency
Intervention
Decision

Monitoring
Service

A2-3. Contact
Authorities

Intervention
Decision

200201
–
202201

ID
6

Monitoring
Service

A2-3. Contact
Authorities

Emergency
Response
Agency

A6. Emergency
Response

Alarm
Notification

200201
–
202201

ID
7

Cyber
Sensor

A1-7. Detect
Cyber-Intrusion

System
Controller

A3. Activate
Alarm

Cyber
Attack
Notification

201201
–
202201

ID
8

System
Controller

A2-1. Contact
Monitoring
Service

Monitoring
Service

A5-1.
Homeowner
Intervention
Decision

Cyber
Attack
Notification

201201
–
202201

Table 26. Updated Intruder Detection IER List

 59

Following the update within the role-centric architecture, it is necessary to

ensure that the changes are considered for the system-centric architecture, as well. It is

assumed that the current door and window sensors are not well suited to detect cyber attacks,

and therefore, it will be necessary to identify a requirement in the architecture for a new start

system and correctly assign the system requirements and SIERs, accordingly. In this case, the

architect has chosen to also review the time stamps of current system requirements. The result

follows:

 Roles System
Reqts

Dates Valid SIERs Dates Valid

Sens1 ID-Door Sensor
ID-Window
Sensor

A1-1
A1-2

200201 – 202201
200201 - 202201

Cont1(ID1)
Cont1(ID2)
Cont2(ID1)
Cont2(ID2)
Cont3(ID1)
Cont3(ID2)

200201 – 202201
200201 – 202201
200407 – 202201
200407 – 202201
200201 – 201010
200201 – 201010

Sens2 ID-Door Sensor A1-1 200201 - 202201 Cont1(ID1)
Cont2(ID1)
Cont3(ID1)

200201 – 202201
200407 – 202201
200201 – 201010

Sens3 ID-Window
Sensor

A1-2 200201 - 202201 Cont1(ID2)
Cont2(ID2)
Cont3(ID2)

200201 – 202201
200407 – 202201
200201 – 201010

Sens4 ID-Window
Sensor

A1-2 200201 - 202201 Cont1(ID2)
Cont2(ID2)
Cont3(ID2)

200201 – 202201
200407 – 202201
200201 – 20101

Sens5 FD-Smoke
Detector
FD-Heat Detector

A1-3
A1-4

200201 – 202201
200201 – 202201

Cont1(FD1)
Cont1(FD2)
Cont2(FD1)
Cont2(FD2)
Cont3(FD1)
Cont3(FD2)

200201 – 202201
200201 – 202201
200407 – 202201
200407 – 202201
200201 – 201010
200201 – 201010

Sens6 FD-Smoke
Detector

A1-3 200201 - 202201 Cont1(FD1)
Cont2(FD1)
Cont3(FD1)

200201 – 202201
200407 – 202201
200201 – 201010

Sens7 FL-Flood Sensor A1-5 200201 - 202201 Cont1(FL1)
Cont3(FL1)

200201 – 202201
200201 – 201010

 60

New ID-Cyber Sensor A1-6 201201 - 202201 Cont1(ID7)
Cont2(ID7)

201201 – 202201
201201 – 202201

Table 27. Sensor Systems with Time-Phased Requirements

In this scenario, the new ‘cyber-sensor’ requirements were added to the

system-centric architecture under the system name ‘New,’ to clearly point out the emerging

requirement. Because the system is not expected to be out for another 10 years, the dates and

the previously assigned activities and IERs were adjusted accordingly. Additionally, a brief

analysis of the System Controller situation revealed that while Controller 1 was available for the

lifetime of the architecture (Jan 2002 – Jan 2022), Controller 2 would not be out on the market

until July 2004 and Controller 3 was anticipated to go End-of-Life in October 2010. With this

in mind, it was determined there was no need to establish a requirement for the Cyber-Sensor

to interoperate with Controller 3 as the controller would no longer be available by the time the

cyber-sensor was ready to be fielded. The IER remains valid over the entire lifetime of the

architecture, as the requirement itself has not changed. However, when this is mapped to a

specific system (as an SIER,) the dates may change depending on the lifetime and maturity of

that system.

This is just one example of the power time-stamping architectural elements can

yield. To be able to capture and maintain this kind of information is to provide the tools to see

the evolution of requirements over time and greatly facilitate better decision-making.

b. Time-Phasing Capabilities

These lessons can also be applied to the development community. Software

systems, more than any other fielded technologies, are vulnerable to change and changing

requirements. The current DoD acquisition lifecycle expects software systems to update every

18 months, and the spiral development cycle is pushing that down to 6. Regardless, as systems

are put on contract, future requirements are typically not well understood, and as a result, cost

overruns due to poor requirements definition abound. As the DoD moves forward with time-

phasing requirements, a methodology must be in place for the acquisition community to also

 61

incorporate these concepts into the development cycle, and be able to feed back their progress

to the operators and requirements community.

Time-phasing capabilities can provide two key pieces of information: when a

capability will be available, and when it is going away. The latter is especially important to help

sustain current capabilities. As discussed previously, interoperability is a state. And being able

to track that condition of that state over time is imperative. By knowing when systems are going

to be discontinued, or interfaces no longer supported, that state of interoperability can be

maintained more easily.

The example of home security continues to show how time-phasing capabilities

is worked into the architecture. The below table shows how different systems, despite the fact

that they may have a valid requirement over an extended period of time, may have to implement

this requirement into capability differently. This information is vital to those planners determining

what systems are to be fielded, especially in deciding sets of interoperable systems that must be

deployed.

 Roles SIERs Dates Valid SIECs Dates Valid
Sens1 ID-Door

Sensor
ID-Window
Sensor

Cont1(ID1)
Cont1(ID2)
Cont2(ID1)
Cont2(ID2)
Cont3(ID1)
Cont3(ID2)

200201 – 202201
200201 – 202201
200407 – 202201
200407 – 202201
200201 – 201010
200201 – 201010

Cont1(ID1)
Cont1(ID2)
Cont2(ID1)
Cont2(ID2)
Cont3(ID1)
Cont3(ID2)

200201-202201
200201-202201
200407-202201
200407-202201
200601-201010
200601-201010

Sens2 ID-Door
Sensor

Cont1(ID1)
Cont2(ID1)
Cont3(ID1)

200201 – 202201
200407 – 202201
200201 – 201010

Cont1(ID1)
Cont2(ID1)
Cont3(ID1)

200509-201105
200407-201105
200201-201010

Sens3 ID-Window
Sensor

Cont1(ID2)
Cont2(ID2)
Cont3(ID2)

200201 – 202201
200407 – 202201
200201 – 201010

Cont1(ID2)
Cont2(ID2)

200201-202201
200401-202201

Sens4 ID-Window
Sensor

Cont1(ID2)
Cont2(ID2)
Cont3(ID2)

200201 – 202201
200407 – 202201
200201 – 201010

Cont1(ID2)

Cont3(ID2)

200301-202201

200201-201010

 62

Sens5 FD-Smoke
Detector
FD-Heat
Detector

Cont1(FD1)
Cont1(FD2)
Cont2(FD1)
Cont2(FD2)
Cont3(FD1)
Cont3(FD2)

200201 – 202201
200201 – 202201
200407 – 202201
200407 – 202201
200201 – 201010
200201 – 201010

Cont1(FD1)
Cont1(FD2)
Cont2(FD1)
Cont2(FD2)
Cont3(FD1)
Cont3(FD2)

200201-201011
200201-201011
200601-202201
200601-202201
200201-201010
200201-201010

Sens6 FD-Smoke
Detector

Cont1(FD1)
Cont2(FD1)
Cont3(FD1)

200201 – 202201
200407 – 202201
200201 – 201010

Cont1(FD1)
Cont2(FD1)

200201-202201
200407-202201

Sens7 FL-Flood
Sensor

Cont1(FL1)
Cont3(FL1)

200201 – 202201
200201 – 201010

Cont1(FL1)
Cont3(FL1)

200201-202201
200201-201010

New ID-Cyber
Sensor

Cont1(ID7)
Cont2(ID7)

201201 – 202201
201201 – 202201

Cont1(ID7)
Cont2(ID7)

201201-202201
201201-202201

Table 28. Sensor Systems with Time-Phased Capabilities

The time-phased requirements reveal the development plans of the various

system developers and provide planners that additional piece of information to make an

informed decision about which systems will be available to the warfighter when they deploy at

various times in the future. For instance, this attribute reveals that Sensor 2 is going off the

market in May 2011. Any reliance on this sensor after that point would have to be

compensated. In addition, the different sensors implement the required interfaces at different

times. Some have no intentions of implementing some of the interfaces at any time. At any one

future date, a different set of sensor-controller pairs might be needed to complete the needs of

the functional area.

These scenarios are not only plausible, they are extremely realistic, especially as

the DoD grows more reliant on Commercial-Off-the-Shelf (COTS) products in which the DoD

may not be the primary customer. The DoD cannot assume that all its requirements will be

implemented in a COTS-based world. Commercial industry has become the forcing function

for new technologies, and many vendors will choose to drive with it, rather than step backwards

to meet defense needs.

Overall, it is the responsibility of the system developer to maintain the data on

their systems. And, therefore, the onus is put on the acquisition community to determine when a

 63

capability will be available and how it will be supported. If it is decided that a system will be

replaced, this process facilitates a smoother transition from the old system to the new by

allowing for easy conversion of requirements and previously documented interfaces. Today,

new systems often do not have the luxury of obtaining documentation on the systems they are

intended to replace. This methodology allays many of those issues.

c. Satisfying Spiral Development Needs

DoDD 5000.2 mandates “software development and integration shall follow an

iterative spiral development process in which continually expanding software versions are based

on learning from earlier development.” [16] As a result, there are literally thousands of

disparate software development projects in the DoD today, each spiraling at their own rates, all

of which must be interoperable with at least one or more of the others, and most of which must

be integrated into a larger system to be fielded. This creates a constantly changing environment

in which capabilities are continuously fielded, with little to no mechanism outside each individual

program office to track their implementations. And there is nothing that provides the individual

program manager enough information to know if he or she is going to encounter problems with

the other systems he is required to interact with as each spiral develops.

The popularity of spiral development cycles is one of the modern changes that

make this type of architectural methodology so necessary. Keeping track of emerging and

falling capabilities can often be difficult within a program office, much less keeping track of the

orthogonal spirals of several systems, all of which are attempting to be interoperable. By time-

phasing capabilities in a central repository, it will be easier to determine when information

exchange capabilities will come on line and give program offices the opportunity to collaborate

their different schedules in a centralized fashion.

As such, the proposed methodology provides a foundation for meaningful

communication not only between the requirements and development communities, but within

these communities as well, so program managers will have insight into the activities of the other

 64

programs with which he must interact. This quality is of most importance to those responsible

for system integration.

Currently, many system integrators are handed (particularly) software

applications to be integrated into their systems with little to no knowledge of what that

application does, how it will interact with the other components of their system, and how it

affects the requirements of their system as a whole. Many of them are not even provided a

consolidated set of requirements for the integrated system, and rather rely on the requirements

of its components to derive the requirements of the whole. Oftentimes, applications are handed

to them with little to no forewarning, on constantly changing schedules, to be integrated

immediately to meet a warfighting need. To have a tool through which the integrator could track

the separate spiral development cycles of each of his component systems, that provides

information on which capabilities are supported in which spiral, and also keeps track of

interoperability requirements for his integrated system and how those are met by each of the

component systems, would be absolutely invaluable to those responsible for system integration.

d. Resource Planning

Analysis of the completed architecture can aid many other stakeholders besides

the requirements and development communities. One such area that could benefit from the

architectural information is the resource planning community.

As discussed previously, time-phasing of requirements provides additional

information to those responsible for allocating resources and money to systems. By having

access to the ‘bigger picture’ of development activities and customer priorities (requirements

can be attributed with a priority, as well) planners can make better informed decisions about

where money should be allocated to support the needs of tomorrow’s warfighter.

Also, the warplanners of today would benefit from this architectural information,

as well. Today’s planners face the daunting task of determining which systems should be sent to

battle with our soldiers, sailors, and airmen. There currently exists few tools to help them with

this task, and as a result, the logistical requirements to send troops to global ‘hot spots’ is

 65

staggering. Redundant systems and capabilities are fielded. Systems that cannot communicate

with each other and sent out to the field while systems that are interoperable stay at home--all

because there exists no methodology for making informed decisions.

However, using the proposed architectural methodology, this analysis is already

accomplished for the warplanner. SIECs reveal which systems can be fielded together and

where the gaps will be if one system must be chosen over another for external constraints (e.g.

logistical, availability, fiscal, training, etc.)

For instance, in the home security example, if it was determined that an

overseas operation required an intruder detection capability, the warplanner could turn to the

Intruder Detection functional area to find what the requirements were to complete that operation

and what systems were capable of performing it. A fairly simple analysis would reveal that

Controller 2 would not be available until July 2004, and if it were determined that the units

available to deploy had never been trained on Controller 1, it would be necessary to deploy

Controller 3. But, to detect window openings, Controller 3 must be deployed with Sensor 4. If

only Sensor 5 was available, the planner would have to make a decision as to whether to not

support the “Detect Window Opening” activity, or whether to deploy Controller 1, which does

support Sensor 5, and make arrangements for in-theater training.

These are the kinds of decisions our planners need to make every day.

Unfortunately, they are currently not provided the necessary tools and information to make the

best decisions to support the warfighter. The proposed methodology counters that by providing

the required data in a format that allows the planners to make informed decisions about where

and how to employ our systems.

 Architectures are living projects, to be maintained over time. Although this thesis

outlines a Six-Step Approach to creating an architecture, the work is hardly finished there. Any

or all of these steps can, and should, be reaccomplished as the environment, requirements, or

systems change to ensure that the most accurate, consistent information is available to all the

stakeholders at any time.

 66

THIS PAGE LEFT INTENTIONALLY BLANK

 67

V. BENEFITS OF THE DATA-DRIVEN APPROACH

Many benefits of the proposed approach to enterprise architecture have been discussed

in other parts of this thesis. Some of these were directed towards use in the Department of

Defense and specifically toward systems engineering. In the following pages, some of the more

general benefits of this approach towards enterprise architecture are discussed. These benefits

apply to any user of a data-driven architectural approach, be they a definer of requirements, a

systems integrator, a software developer, or a program manager.

A. MAINTENANCE

A data-driven approach to architecture results in an architecture that is easier to

maintain and update compared to its paper or picture-oriented peers. Consider a mature

architectural effort, populated with activities, systems, requirements, capabilities, and all the

information exchanges. As seen in Appendix A, the data elements are extremely dependent on

each other. If one activity must be renamed, or deleted, it can affect literally hundreds or

thousands of other architectural elements, depending on the scope of the effort. In a paper-

based architecture, or even one captured in a non-relational database or spreadsheet, finding all

the links affected by that one changed activity can be extremely difficult.

Take, for instance, the home security architecture outlined in Chapter IV. This

architecture is fairly simple, with few data elements and associations. If it were necessary to

rename the activity “Notify Monitoring Service” to “Alert Central Office,” using a relational

database this change would be a simple to change to one field in the table that contains the

listing of current activities. However, if this were a current architectural effort, working off

another media, such as PowerPoint pictures or non-relational spreadsheets, this one change

would need to be propagated through 6 architectures (the role-centric and system-centric

architectures could not be dynamically linked as the methodology proposes, nor could the 3

functional areas be contained within a single architecture), changing a total of 3 activities, 8

IERs, 3 roles, 9 systems, 12 SIECs, 9 system requirements, 6 system functions, and 96 SIERs.

 68

This one change in a relational database would require a total of 146 separate changes to keep

an architecture that was not data-driven current.

With this, an architecture captured in a database is not only easier to maintain, but is

also cheaper. Coordination of paper copies of the architectural views is timely and expensive.

Currently, ORD reviews in the DoD can take as long as 6-12 months, sometimes longer,

depending on the size and complexity of the ORD and the scope of the changes. Propagation

of even simple changes through paper documents is time-consuming and redirects valuable man-

hours from more important tasks. Using a data-driven approach, changes can be coordinated

electronically using relatively simple tools to control and manage updates.

B. DATA CONFIGURATION, CONTROL, AND CONSISTENCY

Similarly, it is easier to control the architectural data elements using the proposed

methodology, especially compared with the current practices of today. Configuration control of

architectural elements can be built into the database design, only allowing certain users to make

certain types of changes and allowing the architects to retain ownership of their perspective data

elements. Also, disparate architectural efforts often face the problem of different architects

using different language to capture requirements and IERs. By incorporating a centralized

database into the domain’s architectural efforts, key data elements, such as activities and

systems—those elements upon which the majority of the architecture is based—can be

accessed through picklists or other uneditable user interfaces, forcing the architecture to be

based to a common language or data standard.

Furthermore, because the architectural elements are contained in only one location,

many problems with data consistency are alleviated. A high level of consistency is required

within any architecture to maintain usability. As discussed previously, current architectural

efforts lack the visibility between efforts to ensure that IERs are documented by both endpoints,

i.e. if TBMCS lists an IER with GCCS, does GCCS list the same IER in reverse. However,

using the outlined approach, this level of consistency is maintained by forcing all architectural

 69

efforts into a common database, thus providing a structured methodology for preventing these

kinds of oversights.

C. INTEGRATING MULTIPLE ARCHITECTURES

A data-driven approach to architecture design facilitates the integration of multiple

architectures much faster than any picture-based efforts. As seen in the maintainability example,

a single activity touched nearly 150 other architectural data elements. In a database, it is a fairly

simple task to discover which other objects and associations were tied to that task. In picture-

based architectures, there are no such mappings. Every element of the subject architecture

would have to be examined during every integration effort to see where the links and

dependencies lie.

D. MULTIPLE VIEW CAPABILITIES

By focusing on the data rather than specific views of the data, the proposed

methodology leaves considerable flexibility in how the data will be presented to the end user.

There exist a variety of tools that can provide access to the data in tabular, database, or even

picture format. Being able to view architectural elements in picture format is a surprisingly

effective style for representing the data—as long as the data drives the picture and not the other

way around. Several modern architectural tools use a graphic user interface to dynamically

generate architectural drawings based on the underlying data. Furthermore, users can

manipulate the drawings and the changes are passed down to the core data elements. This

approach combines the simplicity of the pictures with the strength of the relational database and

is an excellent approach to architectural development.

1. Role-Centric vs. System-Centric

The most obvious viewing benefit introduced with this approach is the ability to view the

architecture data from either a role-centric or system-centric perspective. Functional area

experts may want to view how different systems have been tasked to meet the needs of his

functional area while system developers may want to view how their particular systems have

 70

been tasked across the many functional areas. These two ‘architectures’ are built off the same

set of underlying data. And, therefore, the data can be viewed in any manner the user wishes.

Depending on the power of the tools used to interface with the database, a user could

choose to view the interactions between all Command and Control systems assigned to any

functional area, or how a specific system, like GCCS, fits into the functional area of Focused

Logistics. Similarly, a user could view how the Air Superiority functional area has been

developed; or rather view just the Navy components of Theater Air and Missile Defense. A

data-driven approach does not constrain the users ability to present the information contained in

the architecture, and therefore, is one of the greatest benefits of this methodology.

2. “Roll-Up”/Zoom In/Zoom Out

Storing architectural information within a database also allows the user to choose the

level of detail at which to view the architecture. As the GCCS program manager, I might want

to see how GCCS is expected to interact with other systems in the many different functional

areas. Using a data-driven approach, I could then drill down into the GCCS system itself to

view how each of the components of GCCS come together to meet these requirements. The

level of detail to be viewed would only be constrained by the amount of information that had

been put into the architecture. And, if GCCS were part of a bigger system, like the Air

Operations Center, I could ‘zoom out’ to see how my system fit into the bigger picture of the

functional area.

3. Time-Phasing

The time-phasing of requirements and capabilities within the architecture enables

another viewing benefit—the ability to view the architectural elements at any date in time. As a

functional area architect, I could view how systems could best support my functional area today,

in 2005, 2010, and 2020 by merely selecting the date I wanted to see. The data elements

would then be extracted based on the time attributes they previously had been assigned.

 71

Current architectural efforts often discuss the difference between “as-is” and “to-be”

architectures. Unfortunately, because of the discussed shortcomings in the process, these

become separate architecture efforts, each demonstrating a single snapshot in time. As soon as

the “as-is” architecture is developed, it is out of date because system capabilities have changed.

And the “to-be” architecture can only be developed to a single future date, often 5 or 10 years

in the future. But neither provides the flexibility to ask, “How would the architecture look

somewhere in between?” A data-driven approach provides that capability.

 72

THIS PAGE LEFT INTENTIONALLY BLANK

 73

VI. CLOSING COMMENTS

A. RECOMMENDATIONS

The proposed methodologies have a number of applications: defense, commercial and

academic; systems engineering, integration, and development; software design, integration, and

development. The author recommends their use in any environment which employs distributed

systems and transactions to achieve a common purpose.

It is recognized that in many communities, the Department of Defense in particular,

changing current processes to incorporate some of these methods is a cumbersome effort.

However, the DoD cannot afford to continually throw money at disparate architecture efforts

that have no chance of enabling a state of interoperability, as they are uncoordinated,

inconsistent and unavailable to the other stakeholders whose participation is vital in a system’s

development. Only through strong leadership, and a ‘top-down’ enforcement of disciplined

architectural methods will interoperability be achieved.

B. CONCLUSIONS

The use of enterprise architecture techniques in the planning and requirements phases of

system development can facilitate system-to-system and software-to-software interoperability.

In order to realize the benefits of the architectural methodologies, a structured framework for

implementing and maintaining the architecture is required. It must be fully integrated into each

stakeholder’s processes before full benefit can be realized. The time and resources saved using

an integrated, data-driven architectural approach will create a more efficient environment for the

development of systems and their requirements, and will enable a state of system interoperability

to be achieved and maintained indefinitely.

 74

THIS PAGE LEFT INTENTIONALLY BLANK

 75

APPENDIX A

Figure A-1 . Proposed Architecture Data Model

Role
name
description

1..*

*

1

1

Info Exch Reqt
title
description
priority
frequency
latency
dates valid

Activity
name
description

System Type
name
description

System Activity
name
description
dates valid

1

1

Sys Info Exch Reqt
name
description
frequency
latency
dates valid

System Reqt

System Function
1

1

Info Exch Capability
name
description
format
transfer network
size/bandwidth reqt
speed of transfer
dates valid

*

1

*

1

Information Element
title
description

associated with
1
*

1

1

is assigned to

 76

THIS PAGE LEFT INTENTIONALLY BLANK

 77

APPENDIX B

The following figure shows a high-level overview of the C4ISR Core Architecture Data

Model:

Figure B-1: C4ISR Core Architecture Data Model

As discussed previously, efforts to establish a common data framework are key to

establishing a dynamic enterprise architecture. Depending on the size and nature of the

enterprise, it is likely that pieces of the architecture will be worked in relative anonymity to the

other pieces; and so, establishing a common data model is vital to future efforts to integrate

those pieces into a single architecture.

 78

In constructing the proposed methodology, careful steps were taken to ensure the new

data model was compliant with the CADM. Current DoD efforts are already adhering to the

guidelines established in the CADM, and it is important that any new methodologies adhere to

these same basic principles, to promote reuse of previous architectural efforts. The following

table shows the mapping of the proposed architectural data model elements to the C4ISR Core

Architecture Data Model elements.

Proposed Data Model Element Corresponding CADM Element

Role Node
Activity Process-Activity/Task4
Information Exchange Requirement Exchange Need-Line-IER5
System System
System Information Exchange Capability N/A
System Activity System-Process-Activity
System Information Exchange Requirement Information-Exchange-Matrix-Element6

Table B-1 – CADM Data Model Comparison

4 The CADM confuses the activity modeling aspects of architectures by establishing two types of
“operationally-oriented” activities: Process-Activity and Task. While it claims that various instances of
Process-Activity in an activity-model are related by specifying information flows between pairs of the
Process-Activities, it establishes that an Information Exchange Need-Line-IER goes between two tasks.
This suggests that in order to establish an operational connection between two nodes, one must define the
tasks and the need to exchange information between them; and then separately model these information
flows using the Process-Activity-Model. This doubles the work of the enterprise architect. The proposed
methodology simplifies this construct by suggesting tasks may also be modeled using the IDEF0 processes;
and, therefore, there remains no need to maintain process-activity as a separate entity. As it is, the
proposed “Activity” set can be modeled using either data element.

5 Exchange Need-Line-IER is the association between an Exchange Need-Line-Requirement (a need for a
physical connection between two nodes) and an Information Exchange Requirement (a logical need for
information flow between two nodes) and represents the joining of the information requirement with the
physical connection requirement. In the proposed data model, we simplify this concept by assuming that in
all cases where there is a logical node for information to flow, there exists a physical need, thus eliminating
the need to further define these two concepts separately from their joining.

6 This relationship is overcomplicated in the CADM. The Information-Exchange-Matrix requires the
architect to associate the original Exchange-Need-Line, the IER, the System, the Process-Activity, the Task,
and the System-Process-Activity to make the connection between a System and an Exchange-Need-Line-
IER. This relationship is greatly simplified in the proposed methodology by associating two System-
Process-Activities (System Activity) with an Exchange-Need-Line IER (IER,) which already bring with them
the other information elements.

 79

As demonstrated, the data model for the proposed methodology is generally CADM-

compliant, and in many ways greatly simplifies the existing model by reuse of architectural

elements. The primary reason for the vast simplification is that the proposed methodology

focuses on enterprise architectures in how they can be used to capture interoperability

requirements. There are a multitude of other valid purposes for architectures which are not to

be understated, but do not apply to the issue of interoperability. The CADM aims to provide a

data model which applies to all DoD architecture efforts, and, therefore, contains many elements

not applicable to this work.

The proposed methodology introduces an additional concept beyond the CADM—the

System Information Exchange Capability. Although the CADM supports the concept of a

Capability, and even a System-Capability, this object cannot easily be linked to an Information

Exchange Requirement, Exchange-Need-Line or Exchange-Need-Line-IER. The concept of

differentiating between an information exchange requirement and information exchange

capability is fundamental for the proposed architectural process to be used by system and

software engineers. The ability to view current information exchange capabilities versus future

operational information exchange requirements is an absolutely vital element of using the

proposed methodology to levy future information exchange requirements on existing and

emerging systems. The current CADM construct does allow for this kind of analysis (i.e. it

provides for all the necessary data elements to make this kind of assessment); but it does not

bring them together at any fused location, either by matrix or data element.

 80

THIS PAGE LEFT INTENTIONALLY BLANK

 81

APPENDIX C

The emergence of AP-233 as an ISO standard for systems engineering data exchange is an

opportunity to show the proposed methodologies are in line with current industry trends. The

figure below shows the overall structure for AP-233. All the figures found in this Appendix

were found in “The technical data coverage of the emerging AP-233 STEP Standard and its use

in virtual enterprises,” by Julian Johnson, Erik Herzog, and Michael Giblin, three of the founders

of AP-233.

Figure C-1. AP-233 Data Model Overview [17]

Because AP-233 is still in draft, much detail on exact specifications is not available.

Additionally, a complete comparison of the two data models could not be accomplished due its

 82

‘working’ status. However, the overview shows many similarities to the proposed architecture

data model.

First, it recognizes the need for an Object-Oriented Representation, both within the data

model itself, and also as the data elements are implemented within the many tools of the Systems

Engineering community. Second, AP-233 accounts for the fundamental differences between

requirements and capabilities, in that it implements both a functional architecture and a

physical architecture. Furthermore, it allows both functions and requirements to be mapped

to the physical architecture, thus providing associations similar to the proposed system

function and system requirement. Further detail on some of these relationships is available.

Figure C-2. Allocating Requirements to Systems [17]

Figure C-2 shows the relationship between systems and requirements, showing the AP-233

also supports the concept of associating systems to requirements as a separate entity they refer

to as a Requirement_system_view_relationship, but is similar in construct to the proposed

system requirement. That is, it is an association between an instance of a requirement and an

instance of a system. Furthermore, AP-233 allows for systems to be decomposed into their

components systems, as seen in Figure C-3.

 83

Figure C-4, which focuses on activities, shows many similarities to the proposed

architectural data model. First, it begins the activity-modeling example with the concept of a

Work_order, which appears to be similar to a functional area—a collection of

Figure C-3. System Decomposition [17]

activities that together complete a task. Second, it supports the concept of roles—groups

of activities that come together to achieve a common purpose. Here seen in the block

Engineering_process_activity_element_ assignment, where activities (and NOT

requirements) are assigned to roles. Third, it recognizes that requirements are instantiations of

activities as assigned to systems. This is one of the basic tenets of the proposed architectural

model, and is supported in the AP-233 draft. Finally, as discussed in the previous paragraph,

these requirements are assigned to systems.

There are clearly some aspects of AP-233 that are not fully accounted for. One striking

difference between the proposed model and AP-233 is that AP-233 does not appear to

support the concept of activity decomposition. However, it is unclear due to its draft state if this

is an unsupported concept, or merely one that has not been fully architected yet.

 84

Regardless, there are sufficient similarities between the two efforts to show that both have

taken a similar approach to data modeling. It is possible that future efforts in enterprise

architecting could use the AP-233 as its data standard.

Figure C-4. Activity Modeling Example [17]

 85

LIST OF REFERENCES

[1] DoD Architecture Working Group, C4ISR Architecture Framework Version 2.0. 18

December 1997.

[2] Hamilton, John A., Jr., Murtagh, Jeanne L., Deal, John C., “A Basis for Joint

Interoperability,” Proceedings of the 1999 Command & Control Research &
Technology Symposium, US Naval War College, 29 June – 1 July 1999.

[3] Hamilton, John A., Jr., Murtagh, Jeanne L., “Enabling Interoperability via Software

Architecture,” available online at: www.drew-hamilton.com, May 2001.

[4] Sims, D., “What is Enterprise Architecture?,” available online at:

www.eacommunity.com/articles/, June 2001.

[5] Spewak, S., Enterprise Architecture Planning, Developing a Blueprint for Data,

Applications and Technology, Steven Hill, Wiley & Sons, Inc, 1992, p. xxii.

[6] Catania, Glen A., Hamilton, John A., Jr., Rosen, J. David, Melear, John, “Bilateral

Interoperability through Enterprise Architecture,” Fifth International C2 Research and
Technology Symposium, Canberra, Australia, 24-26 October 2000.

[7] Rosen, J. David, Warwick, Jennifer L.P., Smith, Stephen A., “Architecture for

Interoperability: Putting the Horse Before the Cart,” Software Technology Conference
2001.

[8] Booch, Grady, Rumbaugh, James, Jacobson, Ivar, The Unified Modeling Language

User Guide, Addison-Wesley, 1999.

[9] OASD(C3I), C4ISR Core Architecture Data Model (CADM) Version 2.0, 01

December 1998.

[10] Chairman of the Joint Chiefs of Staff Instruction (CJCSI) 3170.01b, Requirements

Generation Process, 15 April 2001.

[11] Chairman of the Joint Chiefs of Staff Instruction (CJCSI) 6212.01b, Interoperability

and Supportability of National Security Systems, and Information Technology
Systems, 8 May 2000.

 86

[12] Herzog, Erik, Törne, Anders, “Information Modelling for System Specification
Representation and Data Exchange,” Proceedings of the 8th IEEE International
Conference and Workshop on the Engineering of Computer-based Systems, pages
136-143. IEEE Computer Society, 2001.

[13] Heimannsfeld, Klaus, Dusing, Carsten, Herzog, Erik; Johnson, Julian, “Beyond tool

exchanges - Current Status and Future Implications of the Emerging ISO Standard AP-
233,” Presented at European Council on System Engineering (EuCOSE) - 13
September 2000.

[14] Larman, Craig, “Applying UML and Patterns, An Introduction to Object-Oriented
Analysis and Design,” Prentice Hall, 1998.

[15] Department of Defense Directive (DoDD) 5000.1, The Defense Acquisition System,

January 4, 2001.

[16] Department of Defense Directive (DoDD) 5000.2, Operation of the Defense

Acquisition System, January 4, 2001.

[17] Johnson, Julian, Herzog, Erik, Giblin, Michael, “The technical data coverage of the

emerging AP-233 STEP Standard and its use in virtual enterprises,” PDT Europe 2001,
24-26 April 2001, Brussels.

 87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chris Eagle, Chairman, Code CS
Naval Postgraduate School
Monterey, California

4. Dr. Luqi, CS/Lq
Naval Postgraduate School
Monterey, California

5. Valdis Berzins
Naval Postgraduate School
Monterey, California

6. Richard Riehle
Naval Postgraduate School
Monterey, California

